Multiple Classifier Systems Based on Interpretable Linear Classifiers

Multiple classifier systems fall into two types: classifier combination systems and classifier choice systems. The former aggregate component systems to produce an overall classification, while the latter choose between component systems to decide which classification rule to use. We illustrate each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hand, David J., Adams, Niall M., Kelly, Mark G.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue
container_start_page 136
container_title
container_volume 2096
creator Hand, David J.
Adams, Niall M.
Kelly, Mark G.
description Multiple classifier systems fall into two types: classifier combination systems and classifier choice systems. The former aggregate component systems to produce an overall classification, while the latter choose between component systems to decide which classification rule to use. We illustrate each type applied in a real context where practical constraints limit the type of base classifier which can be used. In particular, our context – that of credit scoring – favours the use of simple interpretable, especially linear, forms. Simple measures of classification performance are just one way of measuring the suitability of classification rules in this context.
doi_str_mv 10.1007/3-540-48219-9_14
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1015732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6284099_141_148</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1834-40ebceeb1e4e297830cc5e4902a0e162e5756c8a7cc81a53e06c8c0d69df75a23</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxc2nWkp3xgysKeevxB6hKlCpiAGYLce9QCBNgp0O_e9x2g5Ysqy7997p_CPkhsKMAuR3PJUCUqEY1ak2VJyQKx47-4Y-JWOaUZpyLvQZmepc7TXGlMjOyRg4sFTngl-SkVBaCanViExD-IZ4ONWg9JgsXrZ1X3U1JvPahlCVFfrkbRd63ITkwQZcJ22TLJsefeext0V0rqoGrf8XCNfkorR1wOnxnZCPx8X7_DldvT4t5_ertKOKi1QAFg6xoCiQDfuCcxKFBmYBacZQ5jJzyubOKWolR4iVg3Wm12UuLeMTcnuY29ngbF1627gqmM5XG-t3hgKVOR9ss4MtRKX5RG-Ktv0JUTcDVsNNBGX2FM2ANQbEca5vf7cYeoNDwmHTe1u7L9vF_weTRbSghwSNV_E_t-B1aA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6284099_141_148</pqid></control><display><type>book_chapter</type><title>Multiple Classifier Systems Based on Interpretable Linear Classifiers</title><source>Springer Books</source><creator>Hand, David J. ; Adams, Niall M. ; Kelly, Mark G.</creator><contributor>Kittler, Josef ; Roli, Fabio ; Kittler, Josef ; Roli, Fabio</contributor><creatorcontrib>Hand, David J. ; Adams, Niall M. ; Kelly, Mark G. ; Kittler, Josef ; Roli, Fabio ; Kittler, Josef ; Roli, Fabio</creatorcontrib><description>Multiple classifier systems fall into two types: classifier combination systems and classifier choice systems. The former aggregate component systems to produce an overall classification, while the latter choose between component systems to decide which classification rule to use. We illustrate each type applied in a real context where practical constraints limit the type of base classifier which can be used. In particular, our context – that of credit scoring – favours the use of simple interpretable, especially linear, forms. Simple measures of classification performance are just one way of measuring the suitability of classification rules in this context.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540422846</identifier><identifier>ISBN: 3540422846</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540482199</identifier><identifier>EISBN: 9783540482192</identifier><identifier>DOI: 10.1007/3-540-48219-9_14</identifier><identifier>OCLC: 48984598</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Image processing ; Learning and adaptive systems ; logistic regression ; Pattern recognition ; perceptron ; product models ; support vector machines</subject><ispartof>Lecture notes in computer science, 2001, Vol.2096, p.136-147</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6284099-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-48219-9_14$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-48219-9_14$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,780,781,785,790,791,794,4051,4052,27930,38260,41447,42516</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1015732$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Kittler, Josef</contributor><contributor>Roli, Fabio</contributor><contributor>Kittler, Josef</contributor><contributor>Roli, Fabio</contributor><creatorcontrib>Hand, David J.</creatorcontrib><creatorcontrib>Adams, Niall M.</creatorcontrib><creatorcontrib>Kelly, Mark G.</creatorcontrib><title>Multiple Classifier Systems Based on Interpretable Linear Classifiers</title><title>Lecture notes in computer science</title><description>Multiple classifier systems fall into two types: classifier combination systems and classifier choice systems. The former aggregate component systems to produce an overall classification, while the latter choose between component systems to decide which classification rule to use. We illustrate each type applied in a real context where practical constraints limit the type of base classifier which can be used. In particular, our context – that of credit scoring – favours the use of simple interpretable, especially linear, forms. Simple measures of classification performance are just one way of measuring the suitability of classification rules in this context.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Image processing</subject><subject>Learning and adaptive systems</subject><subject>logistic regression</subject><subject>Pattern recognition</subject><subject>perceptron</subject><subject>product models</subject><subject>support vector machines</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540422846</isbn><isbn>3540422846</isbn><isbn>3540482199</isbn><isbn>9783540482192</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkL1PwzAQxc2nWkp3xgysKeevxB6hKlCpiAGYLce9QCBNgp0O_e9x2g5Ysqy7997p_CPkhsKMAuR3PJUCUqEY1ak2VJyQKx47-4Y-JWOaUZpyLvQZmepc7TXGlMjOyRg4sFTngl-SkVBaCanViExD-IZ4ONWg9JgsXrZ1X3U1JvPahlCVFfrkbRd63ITkwQZcJ22TLJsefeext0V0rqoGrf8XCNfkorR1wOnxnZCPx8X7_DldvT4t5_ertKOKi1QAFg6xoCiQDfuCcxKFBmYBacZQ5jJzyubOKWolR4iVg3Wm12UuLeMTcnuY29ngbF1627gqmM5XG-t3hgKVOR9ss4MtRKX5RG-Ktv0JUTcDVsNNBGX2FM2ANQbEca5vf7cYeoNDwmHTe1u7L9vF_weTRbSghwSNV_E_t-B1aA</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Hand, David J.</creator><creator>Adams, Niall M.</creator><creator>Kelly, Mark G.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Multiple Classifier Systems Based on Interpretable Linear Classifiers</title><author>Hand, David J. ; Adams, Niall M. ; Kelly, Mark G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1834-40ebceeb1e4e297830cc5e4902a0e162e5756c8a7cc81a53e06c8c0d69df75a23</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Image processing</topic><topic>Learning and adaptive systems</topic><topic>logistic regression</topic><topic>Pattern recognition</topic><topic>perceptron</topic><topic>product models</topic><topic>support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hand, David J.</creatorcontrib><creatorcontrib>Adams, Niall M.</creatorcontrib><creatorcontrib>Kelly, Mark G.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hand, David J.</au><au>Adams, Niall M.</au><au>Kelly, Mark G.</au><au>Kittler, Josef</au><au>Roli, Fabio</au><au>Kittler, Josef</au><au>Roli, Fabio</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Multiple Classifier Systems Based on Interpretable Linear Classifiers</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2096</volume><spage>136</spage><epage>147</epage><pages>136-147</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540422846</isbn><isbn>3540422846</isbn><eisbn>3540482199</eisbn><eisbn>9783540482192</eisbn><abstract>Multiple classifier systems fall into two types: classifier combination systems and classifier choice systems. The former aggregate component systems to produce an overall classification, while the latter choose between component systems to decide which classification rule to use. We illustrate each type applied in a real context where practical constraints limit the type of base classifier which can be used. In particular, our context – that of credit scoring – favours the use of simple interpretable, especially linear, forms. Simple measures of classification performance are just one way of measuring the suitability of classification rules in this context.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-48219-9_14</doi><oclcid>48984598</oclcid><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2001, Vol.2096, p.136-147
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1015732
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Image processing
Learning and adaptive systems
logistic regression
Pattern recognition
perceptron
product models
support vector machines
title Multiple Classifier Systems Based on Interpretable Linear Classifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Multiple%20Classifier%20Systems%20Based%20on%20Interpretable%20Linear%20Classifiers&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Hand,%20David%20J.&rft.date=2001&rft.volume=2096&rft.spage=136&rft.epage=147&rft.pages=136-147&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540422846&rft.isbn_list=3540422846&rft_id=info:doi/10.1007/3-540-48219-9_14&rft_dat=%3Cproquest_pasca%3EEBC6284099_141_148%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540482199&rft.eisbn_list=9783540482192&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6284099_141_148&rft_id=info:pmid/&rfr_iscdi=true