Multiple Classifier Systems Based on Interpretable Linear Classifiers
Multiple classifier systems fall into two types: classifier combination systems and classifier choice systems. The former aggregate component systems to produce an overall classification, while the latter choose between component systems to decide which classification rule to use. We illustrate each...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | |
container_start_page | 136 |
container_title | |
container_volume | 2096 |
creator | Hand, David J. Adams, Niall M. Kelly, Mark G. |
description | Multiple classifier systems fall into two types: classifier combination systems and classifier choice systems. The former aggregate component systems to produce an overall classification, while the latter choose between component systems to decide which classification rule to use. We illustrate each type applied in a real context where practical constraints limit the type of base classifier which can be used. In particular, our context – that of credit scoring – favours the use of simple interpretable, especially linear, forms. Simple measures of classification performance are just one way of measuring the suitability of classification rules in this context. |
doi_str_mv | 10.1007/3-540-48219-9_14 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1015732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6284099_141_148</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1834-40ebceeb1e4e297830cc5e4902a0e162e5756c8a7cc81a53e06c8c0d69df75a23</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxc2nWkp3xgysKeevxB6hKlCpiAGYLce9QCBNgp0O_e9x2g5Ysqy7997p_CPkhsKMAuR3PJUCUqEY1ak2VJyQKx47-4Y-JWOaUZpyLvQZmepc7TXGlMjOyRg4sFTngl-SkVBaCanViExD-IZ4ONWg9JgsXrZ1X3U1JvPahlCVFfrkbRd63ITkwQZcJ22TLJsefeext0V0rqoGrf8XCNfkorR1wOnxnZCPx8X7_DldvT4t5_ertKOKi1QAFg6xoCiQDfuCcxKFBmYBacZQ5jJzyubOKWolR4iVg3Wm12UuLeMTcnuY29ngbF1627gqmM5XG-t3hgKVOR9ss4MtRKX5RG-Ktv0JUTcDVsNNBGX2FM2ANQbEca5vf7cYeoNDwmHTe1u7L9vF_weTRbSghwSNV_E_t-B1aA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6284099_141_148</pqid></control><display><type>book_chapter</type><title>Multiple Classifier Systems Based on Interpretable Linear Classifiers</title><source>Springer Books</source><creator>Hand, David J. ; Adams, Niall M. ; Kelly, Mark G.</creator><contributor>Kittler, Josef ; Roli, Fabio ; Kittler, Josef ; Roli, Fabio</contributor><creatorcontrib>Hand, David J. ; Adams, Niall M. ; Kelly, Mark G. ; Kittler, Josef ; Roli, Fabio ; Kittler, Josef ; Roli, Fabio</creatorcontrib><description>Multiple classifier systems fall into two types: classifier combination systems and classifier choice systems. The former aggregate component systems to produce an overall classification, while the latter choose between component systems to decide which classification rule to use. We illustrate each type applied in a real context where practical constraints limit the type of base classifier which can be used. In particular, our context – that of credit scoring – favours the use of simple interpretable, especially linear, forms. Simple measures of classification performance are just one way of measuring the suitability of classification rules in this context.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540422846</identifier><identifier>ISBN: 3540422846</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540482199</identifier><identifier>EISBN: 9783540482192</identifier><identifier>DOI: 10.1007/3-540-48219-9_14</identifier><identifier>OCLC: 48984598</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Image processing ; Learning and adaptive systems ; logistic regression ; Pattern recognition ; perceptron ; product models ; support vector machines</subject><ispartof>Lecture notes in computer science, 2001, Vol.2096, p.136-147</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6284099-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-48219-9_14$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-48219-9_14$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,780,781,785,790,791,794,4051,4052,27930,38260,41447,42516</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1015732$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Kittler, Josef</contributor><contributor>Roli, Fabio</contributor><contributor>Kittler, Josef</contributor><contributor>Roli, Fabio</contributor><creatorcontrib>Hand, David J.</creatorcontrib><creatorcontrib>Adams, Niall M.</creatorcontrib><creatorcontrib>Kelly, Mark G.</creatorcontrib><title>Multiple Classifier Systems Based on Interpretable Linear Classifiers</title><title>Lecture notes in computer science</title><description>Multiple classifier systems fall into two types: classifier combination systems and classifier choice systems. The former aggregate component systems to produce an overall classification, while the latter choose between component systems to decide which classification rule to use. We illustrate each type applied in a real context where practical constraints limit the type of base classifier which can be used. In particular, our context – that of credit scoring – favours the use of simple interpretable, especially linear, forms. Simple measures of classification performance are just one way of measuring the suitability of classification rules in this context.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Image processing</subject><subject>Learning and adaptive systems</subject><subject>logistic regression</subject><subject>Pattern recognition</subject><subject>perceptron</subject><subject>product models</subject><subject>support vector machines</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540422846</isbn><isbn>3540422846</isbn><isbn>3540482199</isbn><isbn>9783540482192</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkL1PwzAQxc2nWkp3xgysKeevxB6hKlCpiAGYLce9QCBNgp0O_e9x2g5Ysqy7997p_CPkhsKMAuR3PJUCUqEY1ak2VJyQKx47-4Y-JWOaUZpyLvQZmepc7TXGlMjOyRg4sFTngl-SkVBaCanViExD-IZ4ONWg9JgsXrZ1X3U1JvPahlCVFfrkbRd63ITkwQZcJ22TLJsefeext0V0rqoGrf8XCNfkorR1wOnxnZCPx8X7_DldvT4t5_ertKOKi1QAFg6xoCiQDfuCcxKFBmYBacZQ5jJzyubOKWolR4iVg3Wm12UuLeMTcnuY29ngbF1627gqmM5XG-t3hgKVOR9ss4MtRKX5RG-Ktv0JUTcDVsNNBGX2FM2ANQbEca5vf7cYeoNDwmHTe1u7L9vF_weTRbSghwSNV_E_t-B1aA</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Hand, David J.</creator><creator>Adams, Niall M.</creator><creator>Kelly, Mark G.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Multiple Classifier Systems Based on Interpretable Linear Classifiers</title><author>Hand, David J. ; Adams, Niall M. ; Kelly, Mark G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1834-40ebceeb1e4e297830cc5e4902a0e162e5756c8a7cc81a53e06c8c0d69df75a23</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Image processing</topic><topic>Learning and adaptive systems</topic><topic>logistic regression</topic><topic>Pattern recognition</topic><topic>perceptron</topic><topic>product models</topic><topic>support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hand, David J.</creatorcontrib><creatorcontrib>Adams, Niall M.</creatorcontrib><creatorcontrib>Kelly, Mark G.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hand, David J.</au><au>Adams, Niall M.</au><au>Kelly, Mark G.</au><au>Kittler, Josef</au><au>Roli, Fabio</au><au>Kittler, Josef</au><au>Roli, Fabio</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Multiple Classifier Systems Based on Interpretable Linear Classifiers</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2096</volume><spage>136</spage><epage>147</epage><pages>136-147</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540422846</isbn><isbn>3540422846</isbn><eisbn>3540482199</eisbn><eisbn>9783540482192</eisbn><abstract>Multiple classifier systems fall into two types: classifier combination systems and classifier choice systems. The former aggregate component systems to produce an overall classification, while the latter choose between component systems to decide which classification rule to use. We illustrate each type applied in a real context where practical constraints limit the type of base classifier which can be used. In particular, our context – that of credit scoring – favours the use of simple interpretable, especially linear, forms. Simple measures of classification performance are just one way of measuring the suitability of classification rules in this context.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-48219-9_14</doi><oclcid>48984598</oclcid><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2001, Vol.2096, p.136-147 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_1015732 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Image processing Learning and adaptive systems logistic regression Pattern recognition perceptron product models support vector machines |
title | Multiple Classifier Systems Based on Interpretable Linear Classifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Multiple%20Classifier%20Systems%20Based%20on%20Interpretable%20Linear%20Classifiers&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Hand,%20David%20J.&rft.date=2001&rft.volume=2096&rft.spage=136&rft.epage=147&rft.pages=136-147&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540422846&rft.isbn_list=3540422846&rft_id=info:doi/10.1007/3-540-48219-9_14&rft_dat=%3Cproquest_pasca%3EEBC6284099_141_148%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540482199&rft.eisbn_list=9783540482192&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6284099_141_148&rft_id=info:pmid/&rfr_iscdi=true |