Methods for Designing Multiple Classifier Systems

In the field of pattern recognition, multiple classifier systems based on the combination of outputs of a set of different classifiers have been proposed as a method for the development of high performance classification systems. In this paper, the problem of design of multiple classifier system is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Roli, Fabio, Giacinto, Giorgio, Vernazza, Gianni
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 87
container_issue
container_start_page 78
container_title
container_volume 2096
creator Roli, Fabio
Giacinto, Giorgio
Vernazza, Gianni
description In the field of pattern recognition, multiple classifier systems based on the combination of outputs of a set of different classifiers have been proposed as a method for the development of high performance classification systems. In this paper, the problem of design of multiple classifier system is discussed. Six design methods based on the so-called “overproduce and choose“ paradigm are described and compared by experiments. Although these design methods exhibited some interesting features, they do not guarantee to design the optimal multiple classifier system for the classification task at hand. Accordingly, the main conclusion of this paper is that the problem of the optimal MCS design still remains open.
doi_str_mv 10.1007/3-540-48219-9_8
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1015720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6284099_73_90</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2268-a0af7ec8402972ed2601f09c76fc2b7c9d264e57023e7e1d193700e6409361cd3</originalsourceid><addsrcrecordid>eNotkDtTwzAQhMVzEkJqWhe0gtPDlq5kwnOGDAVQaxTlHAzGNpIp8u8RgWtubndvi4-xMwEXAsBcKl5q4NpKgRyd3WMnKgu7G_fZVFRCcKU0HrA5GrvzpLS6OmRTUCA5Gq2O2URbtLpEO2HzlN4hjxIIFqdMLGl869epqPtYXFNqNl3TbYrldzs2Q0vFovUpNXVDsXjeppE-0yk7qn2baP6_Z-z19uZlcc8fn-4eFlePPEhZWe7B14aC1SDRSFrLCkQNGExVB7kyAbOiqTQgFRkSa4HKAFClAVUlwlrN2Plf7-BT8G0dfRea5IbYfPq4dQJEaSTkGP-Lpex0G4pu1fcfKfvul6BTLkNxO2IuE8x5-V8b-69vSqOj34dA3Rh9G978MFJMrsoUAdEZ5RDUDwrobCw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6284099_73_90</pqid></control><display><type>book_chapter</type><title>Methods for Designing Multiple Classifier Systems</title><source>Springer Books</source><creator>Roli, Fabio ; Giacinto, Giorgio ; Vernazza, Gianni</creator><contributor>Kittler, Josef ; Roli, Fabio ; Kittler, Josef ; Roli, Fabio</contributor><creatorcontrib>Roli, Fabio ; Giacinto, Giorgio ; Vernazza, Gianni ; Kittler, Josef ; Roli, Fabio ; Kittler, Josef ; Roli, Fabio</creatorcontrib><description>In the field of pattern recognition, multiple classifier systems based on the combination of outputs of a set of different classifiers have been proposed as a method for the development of high performance classification systems. In this paper, the problem of design of multiple classifier system is discussed. Six design methods based on the so-called “overproduce and choose“ paradigm are described and compared by experiments. Although these design methods exhibited some interesting features, they do not guarantee to design the optimal multiple classifier system for the classification task at hand. Accordingly, the main conclusion of this paper is that the problem of the optimal MCS design still remains open.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540422846</identifier><identifier>ISBN: 3540422846</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540482199</identifier><identifier>EISBN: 9783540482192</identifier><identifier>DOI: 10.1007/3-540-48219-9_8</identifier><identifier>OCLC: 48984598</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Classifier Ensemble ; Combination Function ; Computer science; control theory; systems ; Exact sciences and technology ; Generalisation Diversity ; Heuristic Rule ; Image processing ; Learning and adaptive systems ; Pattern recognition ; Radial Basis Function</subject><ispartof>Lecture notes in computer science, 2001, Vol.2096, p.78-87</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2268-a0af7ec8402972ed2601f09c76fc2b7c9d264e57023e7e1d193700e6409361cd3</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6284099-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-48219-9_8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-48219-9_8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1015720$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Kittler, Josef</contributor><contributor>Roli, Fabio</contributor><contributor>Kittler, Josef</contributor><contributor>Roli, Fabio</contributor><creatorcontrib>Roli, Fabio</creatorcontrib><creatorcontrib>Giacinto, Giorgio</creatorcontrib><creatorcontrib>Vernazza, Gianni</creatorcontrib><title>Methods for Designing Multiple Classifier Systems</title><title>Lecture notes in computer science</title><description>In the field of pattern recognition, multiple classifier systems based on the combination of outputs of a set of different classifiers have been proposed as a method for the development of high performance classification systems. In this paper, the problem of design of multiple classifier system is discussed. Six design methods based on the so-called “overproduce and choose“ paradigm are described and compared by experiments. Although these design methods exhibited some interesting features, they do not guarantee to design the optimal multiple classifier system for the classification task at hand. Accordingly, the main conclusion of this paper is that the problem of the optimal MCS design still remains open.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Classifier Ensemble</subject><subject>Combination Function</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Generalisation Diversity</subject><subject>Heuristic Rule</subject><subject>Image processing</subject><subject>Learning and adaptive systems</subject><subject>Pattern recognition</subject><subject>Radial Basis Function</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540422846</isbn><isbn>3540422846</isbn><isbn>3540482199</isbn><isbn>9783540482192</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkDtTwzAQhMVzEkJqWhe0gtPDlq5kwnOGDAVQaxTlHAzGNpIp8u8RgWtubndvi4-xMwEXAsBcKl5q4NpKgRyd3WMnKgu7G_fZVFRCcKU0HrA5GrvzpLS6OmRTUCA5Gq2O2URbtLpEO2HzlN4hjxIIFqdMLGl869epqPtYXFNqNl3TbYrldzs2Q0vFovUpNXVDsXjeppE-0yk7qn2baP6_Z-z19uZlcc8fn-4eFlePPEhZWe7B14aC1SDRSFrLCkQNGExVB7kyAbOiqTQgFRkSa4HKAFClAVUlwlrN2Plf7-BT8G0dfRea5IbYfPq4dQJEaSTkGP-Lpex0G4pu1fcfKfvul6BTLkNxO2IuE8x5-V8b-69vSqOj34dA3Rh9G978MFJMrsoUAdEZ5RDUDwrobCw</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Roli, Fabio</creator><creator>Giacinto, Giorgio</creator><creator>Vernazza, Gianni</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Methods for Designing Multiple Classifier Systems</title><author>Roli, Fabio ; Giacinto, Giorgio ; Vernazza, Gianni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2268-a0af7ec8402972ed2601f09c76fc2b7c9d264e57023e7e1d193700e6409361cd3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Classifier Ensemble</topic><topic>Combination Function</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Generalisation Diversity</topic><topic>Heuristic Rule</topic><topic>Image processing</topic><topic>Learning and adaptive systems</topic><topic>Pattern recognition</topic><topic>Radial Basis Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roli, Fabio</creatorcontrib><creatorcontrib>Giacinto, Giorgio</creatorcontrib><creatorcontrib>Vernazza, Gianni</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roli, Fabio</au><au>Giacinto, Giorgio</au><au>Vernazza, Gianni</au><au>Kittler, Josef</au><au>Roli, Fabio</au><au>Kittler, Josef</au><au>Roli, Fabio</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Methods for Designing Multiple Classifier Systems</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2096</volume><spage>78</spage><epage>87</epage><pages>78-87</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540422846</isbn><isbn>3540422846</isbn><eisbn>3540482199</eisbn><eisbn>9783540482192</eisbn><abstract>In the field of pattern recognition, multiple classifier systems based on the combination of outputs of a set of different classifiers have been proposed as a method for the development of high performance classification systems. In this paper, the problem of design of multiple classifier system is discussed. Six design methods based on the so-called “overproduce and choose“ paradigm are described and compared by experiments. Although these design methods exhibited some interesting features, they do not guarantee to design the optimal multiple classifier system for the classification task at hand. Accordingly, the main conclusion of this paper is that the problem of the optimal MCS design still remains open.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-48219-9_8</doi><oclcid>48984598</oclcid><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2001, Vol.2096, p.78-87
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1015720
source Springer Books
subjects Applied sciences
Artificial intelligence
Classifier Ensemble
Combination Function
Computer science
control theory
systems
Exact sciences and technology
Generalisation Diversity
Heuristic Rule
Image processing
Learning and adaptive systems
Pattern recognition
Radial Basis Function
title Methods for Designing Multiple Classifier Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Methods%20for%20Designing%20Multiple%20Classifier%20Systems&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Roli,%20Fabio&rft.date=2001&rft.volume=2096&rft.spage=78&rft.epage=87&rft.pages=78-87&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540422846&rft.isbn_list=3540422846&rft_id=info:doi/10.1007/3-540-48219-9_8&rft_dat=%3Cproquest_pasca%3EEBC6284099_73_90%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540482199&rft.eisbn_list=9783540482192&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6284099_73_90&rft_id=info:pmid/&rfr_iscdi=true