PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants

Abstract Characterizing regulatory effects of genomic variants in plants remains a challenge. Although several tools based on deep-learning models and large-scale chromatin-profiling data have been available to predict regulatory elements and variant effects, no dedicated tools or web services have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2021-07, Vol.49 (W1), p.W523-W529
Hauptverfasser: Zhao, Hu, Tu, Zhuo, Liu, Yinmeng, Zong, Zhanxiang, Li, Jiacheng, Liu, Hao, Xiong, Feng, Zhan, Jinling, Hu, Xuehai, Xie, Weibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page W529
container_issue W1
container_start_page W523
container_title Nucleic acids research
container_volume 49
creator Zhao, Hu
Tu, Zhuo
Liu, Yinmeng
Zong, Zhanxiang
Li, Jiacheng
Liu, Hao
Xiong, Feng
Zhan, Jinling
Hu, Xuehai
Xie, Weibo
description Abstract Characterizing regulatory effects of genomic variants in plants remains a challenge. Although several tools based on deep-learning models and large-scale chromatin-profiling data have been available to predict regulatory elements and variant effects, no dedicated tools or web services have been reported in plants. Here, we present PlantDeepSEA as a deep learning-based web service to predict regulatory effects of genomic variants in multiple tissues of six plant species (including four crops). PlantDeepSEA provides two main functions. One is called Variant Effector, which aims to predict the effects of sequence variants on chromatin accessibility. Another is Sequence Profiler, a utility that performs ‘in silico saturated mutagenesis’ analysis to discover high-impact sites (e.g., cis-regulatory elements) within a sequence. When validated on independent test sets, the area under receiver operating characteristic curve of deep learning models in PlantDeepSEA ranges from 0.93 to 0.99. We demonstrate the usability of the web service with two examples. PlantDeepSEA could help to prioritize regulatory causal variants and might improve our understanding of their mechanisms of action in different tissues in plants. PlantDeepSEA is available at http://plantdeepsea.ncpgr.cn/. Graphical Abstract Graphical Abstract PlantDeepSEA integrates ATAC-seq data and genomic sequences based on a deep learning approach to predict the regulatory effects of genomic variants in multiple tissues of six plant species. It provides two main functions: "Variant Effector" to annotate the effects of genomic variants on chromatin accessibility, and "Sequence Profiler" to discover high-impact sites.
doi_str_mv 10.1093/nar/gkab383
format Article
fullrecord <record><control><sourceid>oup_webof</sourceid><recordid>TN_cdi_oup_primary_10_1093_nar_gkab383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkab383</oup_id><sourcerecordid>10.1093/nar/gkab383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-dd5b8bb3937b9cdfd76faed2278e28b298bb8cb5fd17a1f48aa65d7bcfa829633</originalsourceid><addsrcrecordid>eNqNkM2LFDEQxYMo7rh68h_IyYu2m4_uTvoiLLPrBywoqOemklR6oz1Jk2RG9r-3h1lWvIinelDv_ap4hLzk7C1ng7yIkC-mn2Cklo_IhsteNO3Qi8dkwyTrGs5afUaelfKDMd7yrn1KzmTLpFJDvyHpywyxXiEuX68v31CgbpV0RsgxxKkxUNDRX2howXwIFmlNdMnogq203iLNOO1nqCnfUfQebS00eTphTLtg6QFyWPGFhkiX46HynDzxMBd8cT_Pyff319-2H5ubzx8-bS9vGiv1UBvnOqONkYNUZrDOO9V7QCeE0ii0EcO61NZ03nEF3LcaoO-cMtaDFkMv5Tl5d-Iue7NDZzHWDPO45LCDfDcmCOPfmxhuxykdRi16oVq9Al6fADanUjL6hyxn47H3ce19vO_9j3utKvliA0aLDwnGWK-EUp0-qiNb_797GyrUkOI27WNdo69O0bRf_vnRbzg4p5c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhao, Hu ; Tu, Zhuo ; Liu, Yinmeng ; Zong, Zhanxiang ; Li, Jiacheng ; Liu, Hao ; Xiong, Feng ; Zhan, Jinling ; Hu, Xuehai ; Xie, Weibo</creator><creatorcontrib>Zhao, Hu ; Tu, Zhuo ; Liu, Yinmeng ; Zong, Zhanxiang ; Li, Jiacheng ; Liu, Hao ; Xiong, Feng ; Zhan, Jinling ; Hu, Xuehai ; Xie, Weibo</creatorcontrib><description>Abstract Characterizing regulatory effects of genomic variants in plants remains a challenge. Although several tools based on deep-learning models and large-scale chromatin-profiling data have been available to predict regulatory elements and variant effects, no dedicated tools or web services have been reported in plants. Here, we present PlantDeepSEA as a deep learning-based web service to predict regulatory effects of genomic variants in multiple tissues of six plant species (including four crops). PlantDeepSEA provides two main functions. One is called Variant Effector, which aims to predict the effects of sequence variants on chromatin accessibility. Another is Sequence Profiler, a utility that performs ‘in silico saturated mutagenesis’ analysis to discover high-impact sites (e.g., cis-regulatory elements) within a sequence. When validated on independent test sets, the area under receiver operating characteristic curve of deep learning models in PlantDeepSEA ranges from 0.93 to 0.99. We demonstrate the usability of the web service with two examples. PlantDeepSEA could help to prioritize regulatory causal variants and might improve our understanding of their mechanisms of action in different tissues in plants. PlantDeepSEA is available at http://plantdeepsea.ncpgr.cn/. Graphical Abstract Graphical Abstract PlantDeepSEA integrates ATAC-seq data and genomic sequences based on a deep learning approach to predict the regulatory effects of genomic variants in multiple tissues of six plant species. It provides two main functions: "Variant Effector" to annotate the effects of genomic variants on chromatin accessibility, and "Sequence Profiler" to discover high-impact sites.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkab383</identifier><identifier>PMID: 34037796</identifier><language>eng</language><publisher>OXFORD: Oxford University Press</publisher><subject>Biochemistry &amp; Molecular Biology ; Life Sciences &amp; Biomedicine ; Science &amp; Technology ; Web Server Issue</subject><ispartof>Nucleic acids research, 2021-07, Vol.49 (W1), p.W523-W529</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>19</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000672775800068</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c389t-dd5b8bb3937b9cdfd76faed2278e28b298bb8cb5fd17a1f48aa65d7bcfa829633</citedby><cites>FETCH-LOGICAL-c389t-dd5b8bb3937b9cdfd76faed2278e28b298bb8cb5fd17a1f48aa65d7bcfa829633</cites><orcidid>0000-0002-2768-3572 ; 0000-0001-5046-6632 ; 0000-0001-6731-1602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262748/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262748/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,1586,1606,2116,27931,27932,39265,53798,53800</link.rule.ids></links><search><creatorcontrib>Zhao, Hu</creatorcontrib><creatorcontrib>Tu, Zhuo</creatorcontrib><creatorcontrib>Liu, Yinmeng</creatorcontrib><creatorcontrib>Zong, Zhanxiang</creatorcontrib><creatorcontrib>Li, Jiacheng</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Xiong, Feng</creatorcontrib><creatorcontrib>Zhan, Jinling</creatorcontrib><creatorcontrib>Hu, Xuehai</creatorcontrib><creatorcontrib>Xie, Weibo</creatorcontrib><title>PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants</title><title>Nucleic acids research</title><addtitle>NUCLEIC ACIDS RES</addtitle><description>Abstract Characterizing regulatory effects of genomic variants in plants remains a challenge. Although several tools based on deep-learning models and large-scale chromatin-profiling data have been available to predict regulatory elements and variant effects, no dedicated tools or web services have been reported in plants. Here, we present PlantDeepSEA as a deep learning-based web service to predict regulatory effects of genomic variants in multiple tissues of six plant species (including four crops). PlantDeepSEA provides two main functions. One is called Variant Effector, which aims to predict the effects of sequence variants on chromatin accessibility. Another is Sequence Profiler, a utility that performs ‘in silico saturated mutagenesis’ analysis to discover high-impact sites (e.g., cis-regulatory elements) within a sequence. When validated on independent test sets, the area under receiver operating characteristic curve of deep learning models in PlantDeepSEA ranges from 0.93 to 0.99. We demonstrate the usability of the web service with two examples. PlantDeepSEA could help to prioritize regulatory causal variants and might improve our understanding of their mechanisms of action in different tissues in plants. PlantDeepSEA is available at http://plantdeepsea.ncpgr.cn/. Graphical Abstract Graphical Abstract PlantDeepSEA integrates ATAC-seq data and genomic sequences based on a deep learning approach to predict the regulatory effects of genomic variants in multiple tissues of six plant species. It provides two main functions: "Variant Effector" to annotate the effects of genomic variants on chromatin accessibility, and "Sequence Profiler" to discover high-impact sites.</description><subject>Biochemistry &amp; Molecular Biology</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Science &amp; Technology</subject><subject>Web Server Issue</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkM2LFDEQxYMo7rh68h_IyYu2m4_uTvoiLLPrBywoqOemklR6oz1Jk2RG9r-3h1lWvIinelDv_ap4hLzk7C1ng7yIkC-mn2Cklo_IhsteNO3Qi8dkwyTrGs5afUaelfKDMd7yrn1KzmTLpFJDvyHpywyxXiEuX68v31CgbpV0RsgxxKkxUNDRX2howXwIFmlNdMnogq203iLNOO1nqCnfUfQebS00eTphTLtg6QFyWPGFhkiX46HynDzxMBd8cT_Pyff319-2H5ubzx8-bS9vGiv1UBvnOqONkYNUZrDOO9V7QCeE0ii0EcO61NZ03nEF3LcaoO-cMtaDFkMv5Tl5d-Iue7NDZzHWDPO45LCDfDcmCOPfmxhuxykdRi16oVq9Al6fADanUjL6hyxn47H3ce19vO_9j3utKvliA0aLDwnGWK-EUp0-qiNb_797GyrUkOI27WNdo69O0bRf_vnRbzg4p5c</recordid><startdate>20210702</startdate><enddate>20210702</enddate><creator>Zhao, Hu</creator><creator>Tu, Zhuo</creator><creator>Liu, Yinmeng</creator><creator>Zong, Zhanxiang</creator><creator>Li, Jiacheng</creator><creator>Liu, Hao</creator><creator>Xiong, Feng</creator><creator>Zhan, Jinling</creator><creator>Hu, Xuehai</creator><creator>Xie, Weibo</creator><general>Oxford University Press</general><general>Oxford Univ Press</general><scope>TOX</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2768-3572</orcidid><orcidid>https://orcid.org/0000-0001-5046-6632</orcidid><orcidid>https://orcid.org/0000-0001-6731-1602</orcidid></search><sort><creationdate>20210702</creationdate><title>PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants</title><author>Zhao, Hu ; Tu, Zhuo ; Liu, Yinmeng ; Zong, Zhanxiang ; Li, Jiacheng ; Liu, Hao ; Xiong, Feng ; Zhan, Jinling ; Hu, Xuehai ; Xie, Weibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-dd5b8bb3937b9cdfd76faed2278e28b298bb8cb5fd17a1f48aa65d7bcfa829633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry &amp; Molecular Biology</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Science &amp; Technology</topic><topic>Web Server Issue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Hu</creatorcontrib><creatorcontrib>Tu, Zhuo</creatorcontrib><creatorcontrib>Liu, Yinmeng</creatorcontrib><creatorcontrib>Zong, Zhanxiang</creatorcontrib><creatorcontrib>Li, Jiacheng</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Xiong, Feng</creatorcontrib><creatorcontrib>Zhan, Jinling</creatorcontrib><creatorcontrib>Hu, Xuehai</creatorcontrib><creatorcontrib>Xie, Weibo</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Hu</au><au>Tu, Zhuo</au><au>Liu, Yinmeng</au><au>Zong, Zhanxiang</au><au>Li, Jiacheng</au><au>Liu, Hao</au><au>Xiong, Feng</au><au>Zhan, Jinling</au><au>Hu, Xuehai</au><au>Xie, Weibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants</atitle><jtitle>Nucleic acids research</jtitle><stitle>NUCLEIC ACIDS RES</stitle><date>2021-07-02</date><risdate>2021</risdate><volume>49</volume><issue>W1</issue><spage>W523</spage><epage>W529</epage><pages>W523-W529</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract Characterizing regulatory effects of genomic variants in plants remains a challenge. Although several tools based on deep-learning models and large-scale chromatin-profiling data have been available to predict regulatory elements and variant effects, no dedicated tools or web services have been reported in plants. Here, we present PlantDeepSEA as a deep learning-based web service to predict regulatory effects of genomic variants in multiple tissues of six plant species (including four crops). PlantDeepSEA provides two main functions. One is called Variant Effector, which aims to predict the effects of sequence variants on chromatin accessibility. Another is Sequence Profiler, a utility that performs ‘in silico saturated mutagenesis’ analysis to discover high-impact sites (e.g., cis-regulatory elements) within a sequence. When validated on independent test sets, the area under receiver operating characteristic curve of deep learning models in PlantDeepSEA ranges from 0.93 to 0.99. We demonstrate the usability of the web service with two examples. PlantDeepSEA could help to prioritize regulatory causal variants and might improve our understanding of their mechanisms of action in different tissues in plants. PlantDeepSEA is available at http://plantdeepsea.ncpgr.cn/. Graphical Abstract Graphical Abstract PlantDeepSEA integrates ATAC-seq data and genomic sequences based on a deep learning approach to predict the regulatory effects of genomic variants in multiple tissues of six plant species. It provides two main functions: "Variant Effector" to annotate the effects of genomic variants on chromatin accessibility, and "Sequence Profiler" to discover high-impact sites.</abstract><cop>OXFORD</cop><pub>Oxford University Press</pub><pmid>34037796</pmid><doi>10.1093/nar/gkab383</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2768-3572</orcidid><orcidid>https://orcid.org/0000-0001-5046-6632</orcidid><orcidid>https://orcid.org/0000-0001-6731-1602</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2021-07, Vol.49 (W1), p.W523-W529
issn 0305-1048
1362-4962
language eng
recordid cdi_oup_primary_10_1093_nar_gkab383
source DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); Oxford University Press Journals All Titles (1996-Current); Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry
subjects Biochemistry & Molecular Biology
Life Sciences & Biomedicine
Science & Technology
Web Server Issue
title PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PlantDeepSEA,%20a%20deep%20learning-based%20web%20service%20to%20predict%20the%20regulatory%20effects%20of%20genomic%20variants%20in%20plants&rft.jtitle=Nucleic%20acids%20research&rft.au=Zhao,%20Hu&rft.date=2021-07-02&rft.volume=49&rft.issue=W1&rft.spage=W523&rft.epage=W529&rft.pages=W523-W529&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkab383&rft_dat=%3Coup_webof%3E10.1093/nar/gkab383%3C/oup_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34037796&rft_oup_id=10.1093/nar/gkab383&rfr_iscdi=true