PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants
Abstract Characterizing regulatory effects of genomic variants in plants remains a challenge. Although several tools based on deep-learning models and large-scale chromatin-profiling data have been available to predict regulatory elements and variant effects, no dedicated tools or web services have...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2021-07, Vol.49 (W1), p.W523-W529 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | W529 |
---|---|
container_issue | W1 |
container_start_page | W523 |
container_title | Nucleic acids research |
container_volume | 49 |
creator | Zhao, Hu Tu, Zhuo Liu, Yinmeng Zong, Zhanxiang Li, Jiacheng Liu, Hao Xiong, Feng Zhan, Jinling Hu, Xuehai Xie, Weibo |
description | Abstract
Characterizing regulatory effects of genomic variants in plants remains a challenge. Although several tools based on deep-learning models and large-scale chromatin-profiling data have been available to predict regulatory elements and variant effects, no dedicated tools or web services have been reported in plants. Here, we present PlantDeepSEA as a deep learning-based web service to predict regulatory effects of genomic variants in multiple tissues of six plant species (including four crops). PlantDeepSEA provides two main functions. One is called Variant Effector, which aims to predict the effects of sequence variants on chromatin accessibility. Another is Sequence Profiler, a utility that performs ‘in silico saturated mutagenesis’ analysis to discover high-impact sites (e.g., cis-regulatory elements) within a sequence. When validated on independent test sets, the area under receiver operating characteristic curve of deep learning models in PlantDeepSEA ranges from 0.93 to 0.99. We demonstrate the usability of the web service with two examples. PlantDeepSEA could help to prioritize regulatory causal variants and might improve our understanding of their mechanisms of action in different tissues in plants. PlantDeepSEA is available at http://plantdeepsea.ncpgr.cn/.
Graphical Abstract
Graphical Abstract
PlantDeepSEA integrates ATAC-seq data and genomic sequences based on a deep learning approach to predict the regulatory effects of genomic variants in multiple tissues of six plant species. It provides two main functions: "Variant Effector" to annotate the effects of genomic variants on chromatin accessibility, and "Sequence Profiler" to discover high-impact sites. |
doi_str_mv | 10.1093/nar/gkab383 |
format | Article |
fullrecord | <record><control><sourceid>oup_webof</sourceid><recordid>TN_cdi_oup_primary_10_1093_nar_gkab383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkab383</oup_id><sourcerecordid>10.1093/nar/gkab383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-dd5b8bb3937b9cdfd76faed2278e28b298bb8cb5fd17a1f48aa65d7bcfa829633</originalsourceid><addsrcrecordid>eNqNkM2LFDEQxYMo7rh68h_IyYu2m4_uTvoiLLPrBywoqOemklR6oz1Jk2RG9r-3h1lWvIinelDv_ap4hLzk7C1ng7yIkC-mn2Cklo_IhsteNO3Qi8dkwyTrGs5afUaelfKDMd7yrn1KzmTLpFJDvyHpywyxXiEuX68v31CgbpV0RsgxxKkxUNDRX2howXwIFmlNdMnogq203iLNOO1nqCnfUfQebS00eTphTLtg6QFyWPGFhkiX46HynDzxMBd8cT_Pyff319-2H5ubzx8-bS9vGiv1UBvnOqONkYNUZrDOO9V7QCeE0ii0EcO61NZ03nEF3LcaoO-cMtaDFkMv5Tl5d-Iue7NDZzHWDPO45LCDfDcmCOPfmxhuxykdRi16oVq9Al6fADanUjL6hyxn47H3ce19vO_9j3utKvliA0aLDwnGWK-EUp0-qiNb_797GyrUkOI27WNdo69O0bRf_vnRbzg4p5c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhao, Hu ; Tu, Zhuo ; Liu, Yinmeng ; Zong, Zhanxiang ; Li, Jiacheng ; Liu, Hao ; Xiong, Feng ; Zhan, Jinling ; Hu, Xuehai ; Xie, Weibo</creator><creatorcontrib>Zhao, Hu ; Tu, Zhuo ; Liu, Yinmeng ; Zong, Zhanxiang ; Li, Jiacheng ; Liu, Hao ; Xiong, Feng ; Zhan, Jinling ; Hu, Xuehai ; Xie, Weibo</creatorcontrib><description>Abstract
Characterizing regulatory effects of genomic variants in plants remains a challenge. Although several tools based on deep-learning models and large-scale chromatin-profiling data have been available to predict regulatory elements and variant effects, no dedicated tools or web services have been reported in plants. Here, we present PlantDeepSEA as a deep learning-based web service to predict regulatory effects of genomic variants in multiple tissues of six plant species (including four crops). PlantDeepSEA provides two main functions. One is called Variant Effector, which aims to predict the effects of sequence variants on chromatin accessibility. Another is Sequence Profiler, a utility that performs ‘in silico saturated mutagenesis’ analysis to discover high-impact sites (e.g., cis-regulatory elements) within a sequence. When validated on independent test sets, the area under receiver operating characteristic curve of deep learning models in PlantDeepSEA ranges from 0.93 to 0.99. We demonstrate the usability of the web service with two examples. PlantDeepSEA could help to prioritize regulatory causal variants and might improve our understanding of their mechanisms of action in different tissues in plants. PlantDeepSEA is available at http://plantdeepsea.ncpgr.cn/.
Graphical Abstract
Graphical Abstract
PlantDeepSEA integrates ATAC-seq data and genomic sequences based on a deep learning approach to predict the regulatory effects of genomic variants in multiple tissues of six plant species. It provides two main functions: "Variant Effector" to annotate the effects of genomic variants on chromatin accessibility, and "Sequence Profiler" to discover high-impact sites.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkab383</identifier><identifier>PMID: 34037796</identifier><language>eng</language><publisher>OXFORD: Oxford University Press</publisher><subject>Biochemistry & Molecular Biology ; Life Sciences & Biomedicine ; Science & Technology ; Web Server Issue</subject><ispartof>Nucleic acids research, 2021-07, Vol.49 (W1), p.W523-W529</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>19</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000672775800068</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c389t-dd5b8bb3937b9cdfd76faed2278e28b298bb8cb5fd17a1f48aa65d7bcfa829633</citedby><cites>FETCH-LOGICAL-c389t-dd5b8bb3937b9cdfd76faed2278e28b298bb8cb5fd17a1f48aa65d7bcfa829633</cites><orcidid>0000-0002-2768-3572 ; 0000-0001-5046-6632 ; 0000-0001-6731-1602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262748/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262748/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,1586,1606,2116,27931,27932,39265,53798,53800</link.rule.ids></links><search><creatorcontrib>Zhao, Hu</creatorcontrib><creatorcontrib>Tu, Zhuo</creatorcontrib><creatorcontrib>Liu, Yinmeng</creatorcontrib><creatorcontrib>Zong, Zhanxiang</creatorcontrib><creatorcontrib>Li, Jiacheng</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Xiong, Feng</creatorcontrib><creatorcontrib>Zhan, Jinling</creatorcontrib><creatorcontrib>Hu, Xuehai</creatorcontrib><creatorcontrib>Xie, Weibo</creatorcontrib><title>PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants</title><title>Nucleic acids research</title><addtitle>NUCLEIC ACIDS RES</addtitle><description>Abstract
Characterizing regulatory effects of genomic variants in plants remains a challenge. Although several tools based on deep-learning models and large-scale chromatin-profiling data have been available to predict regulatory elements and variant effects, no dedicated tools or web services have been reported in plants. Here, we present PlantDeepSEA as a deep learning-based web service to predict regulatory effects of genomic variants in multiple tissues of six plant species (including four crops). PlantDeepSEA provides two main functions. One is called Variant Effector, which aims to predict the effects of sequence variants on chromatin accessibility. Another is Sequence Profiler, a utility that performs ‘in silico saturated mutagenesis’ analysis to discover high-impact sites (e.g., cis-regulatory elements) within a sequence. When validated on independent test sets, the area under receiver operating characteristic curve of deep learning models in PlantDeepSEA ranges from 0.93 to 0.99. We demonstrate the usability of the web service with two examples. PlantDeepSEA could help to prioritize regulatory causal variants and might improve our understanding of their mechanisms of action in different tissues in plants. PlantDeepSEA is available at http://plantdeepsea.ncpgr.cn/.
Graphical Abstract
Graphical Abstract
PlantDeepSEA integrates ATAC-seq data and genomic sequences based on a deep learning approach to predict the regulatory effects of genomic variants in multiple tissues of six plant species. It provides two main functions: "Variant Effector" to annotate the effects of genomic variants on chromatin accessibility, and "Sequence Profiler" to discover high-impact sites.</description><subject>Biochemistry & Molecular Biology</subject><subject>Life Sciences & Biomedicine</subject><subject>Science & Technology</subject><subject>Web Server Issue</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkM2LFDEQxYMo7rh68h_IyYu2m4_uTvoiLLPrBywoqOemklR6oz1Jk2RG9r-3h1lWvIinelDv_ap4hLzk7C1ng7yIkC-mn2Cklo_IhsteNO3Qi8dkwyTrGs5afUaelfKDMd7yrn1KzmTLpFJDvyHpywyxXiEuX68v31CgbpV0RsgxxKkxUNDRX2howXwIFmlNdMnogq203iLNOO1nqCnfUfQebS00eTphTLtg6QFyWPGFhkiX46HynDzxMBd8cT_Pyff319-2H5ubzx8-bS9vGiv1UBvnOqONkYNUZrDOO9V7QCeE0ii0EcO61NZ03nEF3LcaoO-cMtaDFkMv5Tl5d-Iue7NDZzHWDPO45LCDfDcmCOPfmxhuxykdRi16oVq9Al6fADanUjL6hyxn47H3ce19vO_9j3utKvliA0aLDwnGWK-EUp0-qiNb_797GyrUkOI27WNdo69O0bRf_vnRbzg4p5c</recordid><startdate>20210702</startdate><enddate>20210702</enddate><creator>Zhao, Hu</creator><creator>Tu, Zhuo</creator><creator>Liu, Yinmeng</creator><creator>Zong, Zhanxiang</creator><creator>Li, Jiacheng</creator><creator>Liu, Hao</creator><creator>Xiong, Feng</creator><creator>Zhan, Jinling</creator><creator>Hu, Xuehai</creator><creator>Xie, Weibo</creator><general>Oxford University Press</general><general>Oxford Univ Press</general><scope>TOX</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2768-3572</orcidid><orcidid>https://orcid.org/0000-0001-5046-6632</orcidid><orcidid>https://orcid.org/0000-0001-6731-1602</orcidid></search><sort><creationdate>20210702</creationdate><title>PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants</title><author>Zhao, Hu ; Tu, Zhuo ; Liu, Yinmeng ; Zong, Zhanxiang ; Li, Jiacheng ; Liu, Hao ; Xiong, Feng ; Zhan, Jinling ; Hu, Xuehai ; Xie, Weibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-dd5b8bb3937b9cdfd76faed2278e28b298bb8cb5fd17a1f48aa65d7bcfa829633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry & Molecular Biology</topic><topic>Life Sciences & Biomedicine</topic><topic>Science & Technology</topic><topic>Web Server Issue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Hu</creatorcontrib><creatorcontrib>Tu, Zhuo</creatorcontrib><creatorcontrib>Liu, Yinmeng</creatorcontrib><creatorcontrib>Zong, Zhanxiang</creatorcontrib><creatorcontrib>Li, Jiacheng</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Xiong, Feng</creatorcontrib><creatorcontrib>Zhan, Jinling</creatorcontrib><creatorcontrib>Hu, Xuehai</creatorcontrib><creatorcontrib>Xie, Weibo</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Hu</au><au>Tu, Zhuo</au><au>Liu, Yinmeng</au><au>Zong, Zhanxiang</au><au>Li, Jiacheng</au><au>Liu, Hao</au><au>Xiong, Feng</au><au>Zhan, Jinling</au><au>Hu, Xuehai</au><au>Xie, Weibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants</atitle><jtitle>Nucleic acids research</jtitle><stitle>NUCLEIC ACIDS RES</stitle><date>2021-07-02</date><risdate>2021</risdate><volume>49</volume><issue>W1</issue><spage>W523</spage><epage>W529</epage><pages>W523-W529</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract
Characterizing regulatory effects of genomic variants in plants remains a challenge. Although several tools based on deep-learning models and large-scale chromatin-profiling data have been available to predict regulatory elements and variant effects, no dedicated tools or web services have been reported in plants. Here, we present PlantDeepSEA as a deep learning-based web service to predict regulatory effects of genomic variants in multiple tissues of six plant species (including four crops). PlantDeepSEA provides two main functions. One is called Variant Effector, which aims to predict the effects of sequence variants on chromatin accessibility. Another is Sequence Profiler, a utility that performs ‘in silico saturated mutagenesis’ analysis to discover high-impact sites (e.g., cis-regulatory elements) within a sequence. When validated on independent test sets, the area under receiver operating characteristic curve of deep learning models in PlantDeepSEA ranges from 0.93 to 0.99. We demonstrate the usability of the web service with two examples. PlantDeepSEA could help to prioritize regulatory causal variants and might improve our understanding of their mechanisms of action in different tissues in plants. PlantDeepSEA is available at http://plantdeepsea.ncpgr.cn/.
Graphical Abstract
Graphical Abstract
PlantDeepSEA integrates ATAC-seq data and genomic sequences based on a deep learning approach to predict the regulatory effects of genomic variants in multiple tissues of six plant species. It provides two main functions: "Variant Effector" to annotate the effects of genomic variants on chromatin accessibility, and "Sequence Profiler" to discover high-impact sites.</abstract><cop>OXFORD</cop><pub>Oxford University Press</pub><pmid>34037796</pmid><doi>10.1093/nar/gkab383</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2768-3572</orcidid><orcidid>https://orcid.org/0000-0001-5046-6632</orcidid><orcidid>https://orcid.org/0000-0001-6731-1602</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2021-07, Vol.49 (W1), p.W523-W529 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_oup_primary_10_1093_nar_gkab383 |
source | DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); Oxford University Press Journals All Titles (1996-Current); Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Biochemistry & Molecular Biology Life Sciences & Biomedicine Science & Technology Web Server Issue |
title | PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PlantDeepSEA,%20a%20deep%20learning-based%20web%20service%20to%20predict%20the%20regulatory%20effects%20of%20genomic%20variants%20in%20plants&rft.jtitle=Nucleic%20acids%20research&rft.au=Zhao,%20Hu&rft.date=2021-07-02&rft.volume=49&rft.issue=W1&rft.spage=W523&rft.epage=W529&rft.pages=W523-W529&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkab383&rft_dat=%3Coup_webof%3E10.1093/nar/gkab383%3C/oup_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34037796&rft_oup_id=10.1093/nar/gkab383&rfr_iscdi=true |