On monolithic supermassive stars

ABSTRACT Supermassive stars have been proposed as the progenitors of the massive ($\sim \!10^{9}\, \mathrm{M}_{\odot }$) quasars observed at z ∼ 7. Prospects for directly detecting supermassive stars with next-generation facilities depend critically on their intrinsic lifetimes, as well as their for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2020-05, Vol.494 (2), p.2236-2243
Hauptverfasser: Woods, Tyrone E, Heger, Alexander, Haemmerlé, Lionel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2243
container_issue 2
container_start_page 2236
container_title Monthly notices of the Royal Astronomical Society
container_volume 494
creator Woods, Tyrone E
Heger, Alexander
Haemmerlé, Lionel
description ABSTRACT Supermassive stars have been proposed as the progenitors of the massive ($\sim \!10^{9}\, \mathrm{M}_{\odot }$) quasars observed at z ∼ 7. Prospects for directly detecting supermassive stars with next-generation facilities depend critically on their intrinsic lifetimes, as well as their formation rates. We use the one-dimensional stellar evolution code kepler to explore the theoretical limiting case of zero-metallicity non-rotating stars, formed monolithically with initial masses between $10$ and $190\, \mathrm{kM}_{\odot }$. We find that stars born with masses between $\sim\! 60$ and $\sim\! 150\, \mathrm{kM}_{\odot }$ collapse at the end of the main sequence, burning stably for $\sim\! 1.5\, \mathrm{Myr}$. More massive stars collapse directly through the general relativistic instability after only a thermal time-scale of $\sim\! 3$–$4\, \mathrm{kyr}$. The expected difficulty in producing such massive thermally relaxed objects, together with recent results for currently preferred rapidly accreting formation models, suggests that such ‘truly direct’ or ‘dark’ collapses may not be typical for supermassive objects in the early Universe. We close by discussing the evolution of supermassive stars in the broader context of massive primordial stellar evolution and the possibility of supermassive stellar explosions.
doi_str_mv 10.1093/mnras/staa763
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_oup_primary_10_1093_mnras_staa763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/staa763</oup_id><sourcerecordid>10.1093/mnras/staa763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-45f9edfda11a602fadd0a3d5ff70429bd4f7a53752ef5e9410495cd40553bfcc3</originalsourceid><addsrcrecordid>eNqNj0tLxDAUhYMoWEeX7rsUJM5N82qXUnQUBmaj65LmgZFpU5JW8d_bsYNbXd2z-M7hfghdE7gjUNF110eV1mlUSgp6gjJCBcdFJcQpygAox6Uk5BxdpPQOAIwWIkP5rs-70Ie9H9-8ztM02NiplPyHzeelmC7RmVP7ZK-Od4VeHx9e6ie83W2e6_st1pSKETPuKmucUYQoAYVTxoCihjsngRVVa5iTilPJC-u4rRgBVnFtGHBOW6c1XSG87OoYUorWNUP0nYpfDYHmoNf86DVHvZkvF_7TtsEl7W2v7W9n9uOUl1IWh8RqP6rRh74OUz_O1dv_V2f6ZqHDNPzx0zejKnQ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On monolithic supermassive stars</title><source>Oxford Journals Open Access Collection</source><creator>Woods, Tyrone E ; Heger, Alexander ; Haemmerlé, Lionel</creator><creatorcontrib>Woods, Tyrone E ; Heger, Alexander ; Haemmerlé, Lionel</creatorcontrib><description>ABSTRACT Supermassive stars have been proposed as the progenitors of the massive ($\sim \!10^{9}\, \mathrm{M}_{\odot }$) quasars observed at z ∼ 7. Prospects for directly detecting supermassive stars with next-generation facilities depend critically on their intrinsic lifetimes, as well as their formation rates. We use the one-dimensional stellar evolution code kepler to explore the theoretical limiting case of zero-metallicity non-rotating stars, formed monolithically with initial masses between $10$ and $190\, \mathrm{kM}_{\odot }$. We find that stars born with masses between $\sim\! 60$ and $\sim\! 150\, \mathrm{kM}_{\odot }$ collapse at the end of the main sequence, burning stably for $\sim\! 1.5\, \mathrm{Myr}$. More massive stars collapse directly through the general relativistic instability after only a thermal time-scale of $\sim\! 3$–$4\, \mathrm{kyr}$. The expected difficulty in producing such massive thermally relaxed objects, together with recent results for currently preferred rapidly accreting formation models, suggests that such ‘truly direct’ or ‘dark’ collapses may not be typical for supermassive objects in the early Universe. We close by discussing the evolution of supermassive stars in the broader context of massive primordial stellar evolution and the possibility of supermassive stellar explosions.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/staa763</identifier><language>eng</language><publisher>OXFORD: Oxford University Press</publisher><subject>Astronomy &amp; Astrophysics ; Physical Sciences ; Science &amp; Technology</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2020-05, Vol.494 (2), p.2236-2243</ispartof><rights>2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>24</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000535877200054</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c336t-45f9edfda11a602fadd0a3d5ff70429bd4f7a53752ef5e9410495cd40553bfcc3</citedby><cites>FETCH-LOGICAL-c336t-45f9edfda11a602fadd0a3d5ff70429bd4f7a53752ef5e9410495cd40553bfcc3</cites><orcidid>0000-0002-3684-1325 ; 0000-0003-1428-5775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,1586,1606,27931,27932,28255</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/staa763$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Woods, Tyrone E</creatorcontrib><creatorcontrib>Heger, Alexander</creatorcontrib><creatorcontrib>Haemmerlé, Lionel</creatorcontrib><title>On monolithic supermassive stars</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>MON NOT R ASTRON SOC</addtitle><description>ABSTRACT Supermassive stars have been proposed as the progenitors of the massive ($\sim \!10^{9}\, \mathrm{M}_{\odot }$) quasars observed at z ∼ 7. Prospects for directly detecting supermassive stars with next-generation facilities depend critically on their intrinsic lifetimes, as well as their formation rates. We use the one-dimensional stellar evolution code kepler to explore the theoretical limiting case of zero-metallicity non-rotating stars, formed monolithically with initial masses between $10$ and $190\, \mathrm{kM}_{\odot }$. We find that stars born with masses between $\sim\! 60$ and $\sim\! 150\, \mathrm{kM}_{\odot }$ collapse at the end of the main sequence, burning stably for $\sim\! 1.5\, \mathrm{Myr}$. More massive stars collapse directly through the general relativistic instability after only a thermal time-scale of $\sim\! 3$–$4\, \mathrm{kyr}$. The expected difficulty in producing such massive thermally relaxed objects, together with recent results for currently preferred rapidly accreting formation models, suggests that such ‘truly direct’ or ‘dark’ collapses may not be typical for supermassive objects in the early Universe. We close by discussing the evolution of supermassive stars in the broader context of massive primordial stellar evolution and the possibility of supermassive stellar explosions.</description><subject>Astronomy &amp; Astrophysics</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNj0tLxDAUhYMoWEeX7rsUJM5N82qXUnQUBmaj65LmgZFpU5JW8d_bsYNbXd2z-M7hfghdE7gjUNF110eV1mlUSgp6gjJCBcdFJcQpygAox6Uk5BxdpPQOAIwWIkP5rs-70Ie9H9-8ztM02NiplPyHzeelmC7RmVP7ZK-Od4VeHx9e6ie83W2e6_st1pSKETPuKmucUYQoAYVTxoCihjsngRVVa5iTilPJC-u4rRgBVnFtGHBOW6c1XSG87OoYUorWNUP0nYpfDYHmoNf86DVHvZkvF_7TtsEl7W2v7W9n9uOUl1IWh8RqP6rRh74OUz_O1dv_V2f6ZqHDNPzx0zejKnQ4</recordid><startdate>20200511</startdate><enddate>20200511</enddate><creator>Woods, Tyrone E</creator><creator>Heger, Alexander</creator><creator>Haemmerlé, Lionel</creator><general>Oxford University Press</general><general>Oxford Univ Press</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3684-1325</orcidid><orcidid>https://orcid.org/0000-0003-1428-5775</orcidid></search><sort><creationdate>20200511</creationdate><title>On monolithic supermassive stars</title><author>Woods, Tyrone E ; Heger, Alexander ; Haemmerlé, Lionel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-45f9edfda11a602fadd0a3d5ff70429bd4f7a53752ef5e9410495cd40553bfcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomy &amp; Astrophysics</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woods, Tyrone E</creatorcontrib><creatorcontrib>Heger, Alexander</creatorcontrib><creatorcontrib>Haemmerlé, Lionel</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Woods, Tyrone E</au><au>Heger, Alexander</au><au>Haemmerlé, Lionel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On monolithic supermassive stars</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>MON NOT R ASTRON SOC</stitle><date>2020-05-11</date><risdate>2020</risdate><volume>494</volume><issue>2</issue><spage>2236</spage><epage>2243</epage><pages>2236-2243</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT Supermassive stars have been proposed as the progenitors of the massive ($\sim \!10^{9}\, \mathrm{M}_{\odot }$) quasars observed at z ∼ 7. Prospects for directly detecting supermassive stars with next-generation facilities depend critically on their intrinsic lifetimes, as well as their formation rates. We use the one-dimensional stellar evolution code kepler to explore the theoretical limiting case of zero-metallicity non-rotating stars, formed monolithically with initial masses between $10$ and $190\, \mathrm{kM}_{\odot }$. We find that stars born with masses between $\sim\! 60$ and $\sim\! 150\, \mathrm{kM}_{\odot }$ collapse at the end of the main sequence, burning stably for $\sim\! 1.5\, \mathrm{Myr}$. More massive stars collapse directly through the general relativistic instability after only a thermal time-scale of $\sim\! 3$–$4\, \mathrm{kyr}$. The expected difficulty in producing such massive thermally relaxed objects, together with recent results for currently preferred rapidly accreting formation models, suggests that such ‘truly direct’ or ‘dark’ collapses may not be typical for supermassive objects in the early Universe. We close by discussing the evolution of supermassive stars in the broader context of massive primordial stellar evolution and the possibility of supermassive stellar explosions.</abstract><cop>OXFORD</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/staa763</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3684-1325</orcidid><orcidid>https://orcid.org/0000-0003-1428-5775</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2020-05, Vol.494 (2), p.2236-2243
issn 0035-8711
1365-2966
language eng
recordid cdi_oup_primary_10_1093_mnras_staa763
source Oxford Journals Open Access Collection
subjects Astronomy & Astrophysics
Physical Sciences
Science & Technology
title On monolithic supermassive stars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A42%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20monolithic%20supermassive%20stars&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Woods,%20Tyrone%20E&rft.date=2020-05-11&rft.volume=494&rft.issue=2&rft.spage=2236&rft.epage=2243&rft.pages=2236-2243&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/staa763&rft_dat=%3Coup_TOX%3E10.1093/mnras/staa763%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/staa763&rfr_iscdi=true