Stabilization of a Timoshenko beam system with a tip mass under unknown non-uniformly bounded disturbances
Abstract This paper addresses the boundary stabilization problem of a Timoshenko beam system with a tip mass under the external disturbance at the control end. Applying the idea of active disturbance rejection control, time-varying high-gain observers are designed to estimate the disturbances, and c...
Gespeichert in:
Veröffentlicht in: | IMA journal of mathematical control and information 2020-03, Vol.37 (1), p.241-259 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 259 |
---|---|
container_issue | 1 |
container_start_page | 241 |
container_title | IMA journal of mathematical control and information |
container_volume | 37 |
creator | Zhang, Liping Liu, Dongyi Xu, Genqi |
description | Abstract
This paper addresses the boundary stabilization problem of a Timoshenko beam system with a tip mass under the external disturbance at the control end. Applying the idea of active disturbance rejection control, time-varying high-gain observers are designed to estimate the disturbances, and continuous anti-disturbances feedback controllers are developed. By choosing a suitable time-varying function, the disturbance error estimations can converge exponentially to zero. The well posedness of the closed-loop system is proved using the semigroup theory. With the proposed controllers, the exponential stability of the closed-loop system is demonstrated by constructing appropriate Lyapunov functional. A numerical simulation is given to illustrate the effectiveness of the proposed control strategy. |
doi_str_mv | 10.1093/imamci/dny048 |
format | Article |
fullrecord | <record><control><sourceid>oup</sourceid><recordid>TN_cdi_oup_primary_10_1093_imamci_dny048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imamci/dny048</oup_id><sourcerecordid>10.1093/imamci/dny048</sourcerecordid><originalsourceid>FETCH-LOGICAL-o188t-4e4f1597a8f28530b67cfddec74f392de10981411bf6ab3ca117e69c94c42c673</originalsourceid><addsrcrecordid>eNotkD1rwzAYhEVpoWnasbvGLm702rIljyX0CwIdms5Gn0RJJAVLJri_vg7ucgd3cHAPQo9AnoG01cp54ZVb6TASyq_QAiiDouGcXaMFKZu6IKymt-gupT0hUwDlAu2_s5Du6H5FdjHgaLHAW-dj2plwiFga4XEaUzYen13eTW12J-xFSngI2vSTHkI8BxxiKIbgbOz9ccQyXlqNtUt56KUIyqR7dGPFMZmHf1-in7fX7fqj2Hy9f65fNkUEznNBDbVQt0xwW_K6IrJhymptFKO2akttpq8cKIC0jZCVEgDMNK1qqaKlali1RE_zbhxO3amfqPRjB6S7MOpmRt3MqPoDdABe0Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stabilization of a Timoshenko beam system with a tip mass under unknown non-uniformly bounded disturbances</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Zhang, Liping ; Liu, Dongyi ; Xu, Genqi</creator><creatorcontrib>Zhang, Liping ; Liu, Dongyi ; Xu, Genqi</creatorcontrib><description>Abstract
This paper addresses the boundary stabilization problem of a Timoshenko beam system with a tip mass under the external disturbance at the control end. Applying the idea of active disturbance rejection control, time-varying high-gain observers are designed to estimate the disturbances, and continuous anti-disturbances feedback controllers are developed. By choosing a suitable time-varying function, the disturbance error estimations can converge exponentially to zero. The well posedness of the closed-loop system is proved using the semigroup theory. With the proposed controllers, the exponential stability of the closed-loop system is demonstrated by constructing appropriate Lyapunov functional. A numerical simulation is given to illustrate the effectiveness of the proposed control strategy.</description><identifier>ISSN: 0265-0754</identifier><identifier>EISSN: 1471-6887</identifier><identifier>DOI: 10.1093/imamci/dny048</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>IMA journal of mathematical control and information, 2020-03, Vol.37 (1), p.241-259</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Liping</creatorcontrib><creatorcontrib>Liu, Dongyi</creatorcontrib><creatorcontrib>Xu, Genqi</creatorcontrib><title>Stabilization of a Timoshenko beam system with a tip mass under unknown non-uniformly bounded disturbances</title><title>IMA journal of mathematical control and information</title><description>Abstract
This paper addresses the boundary stabilization problem of a Timoshenko beam system with a tip mass under the external disturbance at the control end. Applying the idea of active disturbance rejection control, time-varying high-gain observers are designed to estimate the disturbances, and continuous anti-disturbances feedback controllers are developed. By choosing a suitable time-varying function, the disturbance error estimations can converge exponentially to zero. The well posedness of the closed-loop system is proved using the semigroup theory. With the proposed controllers, the exponential stability of the closed-loop system is demonstrated by constructing appropriate Lyapunov functional. A numerical simulation is given to illustrate the effectiveness of the proposed control strategy.</description><issn>0265-0754</issn><issn>1471-6887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkD1rwzAYhEVpoWnasbvGLm702rIljyX0CwIdms5Gn0RJJAVLJri_vg7ucgd3cHAPQo9AnoG01cp54ZVb6TASyq_QAiiDouGcXaMFKZu6IKymt-gupT0hUwDlAu2_s5Du6H5FdjHgaLHAW-dj2plwiFga4XEaUzYen13eTW12J-xFSngI2vSTHkI8BxxiKIbgbOz9ccQyXlqNtUt56KUIyqR7dGPFMZmHf1-in7fX7fqj2Hy9f65fNkUEznNBDbVQt0xwW_K6IrJhymptFKO2akttpq8cKIC0jZCVEgDMNK1qqaKlali1RE_zbhxO3amfqPRjB6S7MOpmRt3MqPoDdABe0Q</recordid><startdate>20200309</startdate><enddate>20200309</enddate><creator>Zhang, Liping</creator><creator>Liu, Dongyi</creator><creator>Xu, Genqi</creator><general>Oxford University Press</general><scope/></search><sort><creationdate>20200309</creationdate><title>Stabilization of a Timoshenko beam system with a tip mass under unknown non-uniformly bounded disturbances</title><author>Zhang, Liping ; Liu, Dongyi ; Xu, Genqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o188t-4e4f1597a8f28530b67cfddec74f392de10981411bf6ab3ca117e69c94c42c673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Liping</creatorcontrib><creatorcontrib>Liu, Dongyi</creatorcontrib><creatorcontrib>Xu, Genqi</creatorcontrib><jtitle>IMA journal of mathematical control and information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Liping</au><au>Liu, Dongyi</au><au>Xu, Genqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of a Timoshenko beam system with a tip mass under unknown non-uniformly bounded disturbances</atitle><jtitle>IMA journal of mathematical control and information</jtitle><date>2020-03-09</date><risdate>2020</risdate><volume>37</volume><issue>1</issue><spage>241</spage><epage>259</epage><pages>241-259</pages><issn>0265-0754</issn><eissn>1471-6887</eissn><abstract>Abstract
This paper addresses the boundary stabilization problem of a Timoshenko beam system with a tip mass under the external disturbance at the control end. Applying the idea of active disturbance rejection control, time-varying high-gain observers are designed to estimate the disturbances, and continuous anti-disturbances feedback controllers are developed. By choosing a suitable time-varying function, the disturbance error estimations can converge exponentially to zero. The well posedness of the closed-loop system is proved using the semigroup theory. With the proposed controllers, the exponential stability of the closed-loop system is demonstrated by constructing appropriate Lyapunov functional. A numerical simulation is given to illustrate the effectiveness of the proposed control strategy.</abstract><pub>Oxford University Press</pub><doi>10.1093/imamci/dny048</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0265-0754 |
ispartof | IMA journal of mathematical control and information, 2020-03, Vol.37 (1), p.241-259 |
issn | 0265-0754 1471-6887 |
language | eng |
recordid | cdi_oup_primary_10_1093_imamci_dny048 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | Stabilization of a Timoshenko beam system with a tip mass under unknown non-uniformly bounded disturbances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A03%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20a%20Timoshenko%20beam%20system%20with%20a%20tip%20mass%20under%20unknown%20non-uniformly%20bounded%20disturbances&rft.jtitle=IMA%20journal%20of%20mathematical%20control%20and%20information&rft.au=Zhang,%20Liping&rft.date=2020-03-09&rft.volume=37&rft.issue=1&rft.spage=241&rft.epage=259&rft.pages=241-259&rft.issn=0265-0754&rft.eissn=1471-6887&rft_id=info:doi/10.1093/imamci/dny048&rft_dat=%3Coup%3E10.1093/imamci/dny048%3C/oup%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imamci/dny048&rfr_iscdi=true |