Thermo-physical properties of DU–10 wt.% Mo alloys
Low-enriched uranium alloyed with 10 wt.% molybdenum is under consideration by the Global Threat Reduction Initiative reactor convert program as a very high density fuel to enable the conversion of high-performance research reactors away from highly-enriched uranium fuels. As with any fuel developme...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2010-08, Vol.403 (1), p.160-166 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 166 |
---|---|
container_issue | 1 |
container_start_page | 160 |
container_title | Journal of nuclear materials |
container_volume | 403 |
creator | Burkes, Douglas E. Papesch, Cynthia A. Maddison, Andrew P. Hartmann, Thomas Rice, Francine J. |
description | Low-enriched uranium alloyed with 10
wt.% molybdenum is under consideration by the Global Threat Reduction Initiative reactor convert program as a very high density fuel to enable the conversion of high-performance research reactors away from highly-enriched uranium fuels. As with any fuel development program, the thermo-physical properties of the fuel as a function of temperature are extremely important and must be well characterized in order to effectively model and predict fuel behavior under normal and off-normal irradiation conditions. For the alloy system under investigation, the available thermo-physical property data is relatively inconsistent and often lacks appropriate explanation. Available literature on this alloy system comes mainly from studies done during the 1960s and 1970s, and often does not include sufficient information on fabrication history or conditions to draw conclusions for the current application. The current paper has investigated specific heat capacity, coefficient of linear thermal expansion, density, and thermal diffusivity that were then used to calculate alloy thermal conductivity as a function of temperature. The data obtained from this investigation was compared to available literature on similar U–Mo alloys, and in most cases are in good agreement. |
doi_str_mv | 10.1016/j.jnucmat.2010.06.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_993147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002231151000259X</els_id><sourcerecordid>918036373</sourcerecordid><originalsourceid>FETCH-LOGICAL-e299t-a601ed2cb0bb25eb6dc0a6bf01690d1bed7ce8eafea20d4884d9a96dd60413dc3</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EEuXxCUhhgVgljO3EtVcI8ZaK2JS15dgT1VEalzgFdcc_8Id8Ca7a1Uijo7l3DiEXFAoKVNy0Rduv7dKMBYO0A1EAlQdkQuWU56VkcEgmAIzlnNLqmJzE2AJApaCakHK-wGEZ8tViE701XbYawgqH0WPMQpM9fPz9_FLIvsfiKnsLmem6sIln5KgxXcTz_TwlH0-P8_uXfPb-_Hp_N8uRKTXmRgBFx2wNdc0qrIWzYETdpM4KHK3RTS1KNA0aBq6UsnTKKOGcgJJyZ_kpudzdDXH0Olo_ol3Y0PdoR60Up-U0Mdc7JhX_XGMc9dJHi11negzrqBWVwAWf8kRe7UkT06fNYHrro14NfmmGjWYcpJCyStztjsP02pfHYZuMvUXnh22wC15T0Fv1utV79XqrXoPQST3_B88Uefs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918036373</pqid></control><display><type>article</type><title>Thermo-physical properties of DU–10 wt.% Mo alloys</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Burkes, Douglas E. ; Papesch, Cynthia A. ; Maddison, Andrew P. ; Hartmann, Thomas ; Rice, Francine J.</creator><creatorcontrib>Burkes, Douglas E. ; Papesch, Cynthia A. ; Maddison, Andrew P. ; Hartmann, Thomas ; Rice, Francine J. ; Idaho National Laboratory (INL)</creatorcontrib><description>Low-enriched uranium alloyed with 10
wt.% molybdenum is under consideration by the Global Threat Reduction Initiative reactor convert program as a very high density fuel to enable the conversion of high-performance research reactors away from highly-enriched uranium fuels. As with any fuel development program, the thermo-physical properties of the fuel as a function of temperature are extremely important and must be well characterized in order to effectively model and predict fuel behavior under normal and off-normal irradiation conditions. For the alloy system under investigation, the available thermo-physical property data is relatively inconsistent and often lacks appropriate explanation. Available literature on this alloy system comes mainly from studies done during the 1960s and 1970s, and often does not include sufficient information on fabrication history or conditions to draw conclusions for the current application. The current paper has investigated specific heat capacity, coefficient of linear thermal expansion, density, and thermal diffusivity that were then used to calculate alloy thermal conductivity as a function of temperature. The data obtained from this investigation was compared to available literature on similar U–Mo alloys, and in most cases are in good agreement.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2010.06.018</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>ALLOY SYSTEMS ; ALLOYS ; Applied sciences ; CAPACITY ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; FABRICATION ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; IRRADIATION ; low-enriched uranium ; MOLYBDENUM ; NUCLEAR FUEL CYCLE AND FUEL MATERIALS ; Nuclear fuels ; RESEARCH REACTORS ; SPECIFIC HEAT ; THERMAL CONDUCTIVITY ; THERMAL DIFFUSIVITY ; THERMAL EXPANSION ; thermophysical properties ; URANIUM</subject><ispartof>Journal of nuclear materials, 2010-08, Vol.403 (1), p.160-166</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002231151000259X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23086885$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/993147$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Burkes, Douglas E.</creatorcontrib><creatorcontrib>Papesch, Cynthia A.</creatorcontrib><creatorcontrib>Maddison, Andrew P.</creatorcontrib><creatorcontrib>Hartmann, Thomas</creatorcontrib><creatorcontrib>Rice, Francine J.</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><title>Thermo-physical properties of DU–10 wt.% Mo alloys</title><title>Journal of nuclear materials</title><description>Low-enriched uranium alloyed with 10
wt.% molybdenum is under consideration by the Global Threat Reduction Initiative reactor convert program as a very high density fuel to enable the conversion of high-performance research reactors away from highly-enriched uranium fuels. As with any fuel development program, the thermo-physical properties of the fuel as a function of temperature are extremely important and must be well characterized in order to effectively model and predict fuel behavior under normal and off-normal irradiation conditions. For the alloy system under investigation, the available thermo-physical property data is relatively inconsistent and often lacks appropriate explanation. Available literature on this alloy system comes mainly from studies done during the 1960s and 1970s, and often does not include sufficient information on fabrication history or conditions to draw conclusions for the current application. The current paper has investigated specific heat capacity, coefficient of linear thermal expansion, density, and thermal diffusivity that were then used to calculate alloy thermal conductivity as a function of temperature. The data obtained from this investigation was compared to available literature on similar U–Mo alloys, and in most cases are in good agreement.</description><subject>ALLOY SYSTEMS</subject><subject>ALLOYS</subject><subject>Applied sciences</subject><subject>CAPACITY</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>FABRICATION</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>IRRADIATION</subject><subject>low-enriched uranium</subject><subject>MOLYBDENUM</subject><subject>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</subject><subject>Nuclear fuels</subject><subject>RESEARCH REACTORS</subject><subject>SPECIFIC HEAT</subject><subject>THERMAL CONDUCTIVITY</subject><subject>THERMAL DIFFUSIVITY</subject><subject>THERMAL EXPANSION</subject><subject>thermophysical properties</subject><subject>URANIUM</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRS0EEuXxCUhhgVgljO3EtVcI8ZaK2JS15dgT1VEalzgFdcc_8Id8Ca7a1Uijo7l3DiEXFAoKVNy0Rduv7dKMBYO0A1EAlQdkQuWU56VkcEgmAIzlnNLqmJzE2AJApaCakHK-wGEZ8tViE701XbYawgqH0WPMQpM9fPz9_FLIvsfiKnsLmem6sIln5KgxXcTz_TwlH0-P8_uXfPb-_Hp_N8uRKTXmRgBFx2wNdc0qrIWzYETdpM4KHK3RTS1KNA0aBq6UsnTKKOGcgJJyZ_kpudzdDXH0Olo_ol3Y0PdoR60Up-U0Mdc7JhX_XGMc9dJHi11negzrqBWVwAWf8kRe7UkT06fNYHrro14NfmmGjWYcpJCyStztjsP02pfHYZuMvUXnh22wC15T0Fv1utV79XqrXoPQST3_B88Uefs</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Burkes, Douglas E.</creator><creator>Papesch, Cynthia A.</creator><creator>Maddison, Andrew P.</creator><creator>Hartmann, Thomas</creator><creator>Rice, Francine J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20100801</creationdate><title>Thermo-physical properties of DU–10 wt.% Mo alloys</title><author>Burkes, Douglas E. ; Papesch, Cynthia A. ; Maddison, Andrew P. ; Hartmann, Thomas ; Rice, Francine J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e299t-a601ed2cb0bb25eb6dc0a6bf01690d1bed7ce8eafea20d4884d9a96dd60413dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ALLOY SYSTEMS</topic><topic>ALLOYS</topic><topic>Applied sciences</topic><topic>CAPACITY</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>FABRICATION</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>IRRADIATION</topic><topic>low-enriched uranium</topic><topic>MOLYBDENUM</topic><topic>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</topic><topic>Nuclear fuels</topic><topic>RESEARCH REACTORS</topic><topic>SPECIFIC HEAT</topic><topic>THERMAL CONDUCTIVITY</topic><topic>THERMAL DIFFUSIVITY</topic><topic>THERMAL EXPANSION</topic><topic>thermophysical properties</topic><topic>URANIUM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burkes, Douglas E.</creatorcontrib><creatorcontrib>Papesch, Cynthia A.</creatorcontrib><creatorcontrib>Maddison, Andrew P.</creatorcontrib><creatorcontrib>Hartmann, Thomas</creatorcontrib><creatorcontrib>Rice, Francine J.</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><collection>Pascal-Francis</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burkes, Douglas E.</au><au>Papesch, Cynthia A.</au><au>Maddison, Andrew P.</au><au>Hartmann, Thomas</au><au>Rice, Francine J.</au><aucorp>Idaho National Laboratory (INL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-physical properties of DU–10 wt.% Mo alloys</atitle><jtitle>Journal of nuclear materials</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>403</volume><issue>1</issue><spage>160</spage><epage>166</epage><pages>160-166</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>Low-enriched uranium alloyed with 10
wt.% molybdenum is under consideration by the Global Threat Reduction Initiative reactor convert program as a very high density fuel to enable the conversion of high-performance research reactors away from highly-enriched uranium fuels. As with any fuel development program, the thermo-physical properties of the fuel as a function of temperature are extremely important and must be well characterized in order to effectively model and predict fuel behavior under normal and off-normal irradiation conditions. For the alloy system under investigation, the available thermo-physical property data is relatively inconsistent and often lacks appropriate explanation. Available literature on this alloy system comes mainly from studies done during the 1960s and 1970s, and often does not include sufficient information on fabrication history or conditions to draw conclusions for the current application. The current paper has investigated specific heat capacity, coefficient of linear thermal expansion, density, and thermal diffusivity that were then used to calculate alloy thermal conductivity as a function of temperature. The data obtained from this investigation was compared to available literature on similar U–Mo alloys, and in most cases are in good agreement.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2010.06.018</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2010-08, Vol.403 (1), p.160-166 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_osti_scitechconnect_993147 |
source | Elsevier ScienceDirect Journals Complete |
subjects | ALLOY SYSTEMS ALLOYS Applied sciences CAPACITY Controled nuclear fusion plants Energy Energy. Thermal use of fuels Exact sciences and technology FABRICATION Fission nuclear power plants Fuels Installations for energy generation and conversion: thermal and electrical energy IRRADIATION low-enriched uranium MOLYBDENUM NUCLEAR FUEL CYCLE AND FUEL MATERIALS Nuclear fuels RESEARCH REACTORS SPECIFIC HEAT THERMAL CONDUCTIVITY THERMAL DIFFUSIVITY THERMAL EXPANSION thermophysical properties URANIUM |
title | Thermo-physical properties of DU–10 wt.% Mo alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A12%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-physical%20properties%20of%20DU%E2%80%9310%20wt.%25%20Mo%20alloys&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Burkes,%20Douglas%20E.&rft.aucorp=Idaho%20National%20Laboratory%20(INL)&rft.date=2010-08-01&rft.volume=403&rft.issue=1&rft.spage=160&rft.epage=166&rft.pages=160-166&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2010.06.018&rft_dat=%3Cproquest_osti_%3E918036373%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918036373&rft_id=info:pmid/&rft_els_id=S002231151000259X&rfr_iscdi=true |