Thermo-physical properties of DU–10 wt.% Mo alloys

Low-enriched uranium alloyed with 10 wt.% molybdenum is under consideration by the Global Threat Reduction Initiative reactor convert program as a very high density fuel to enable the conversion of high-performance research reactors away from highly-enriched uranium fuels. As with any fuel developme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2010-08, Vol.403 (1), p.160-166
Hauptverfasser: Burkes, Douglas E., Papesch, Cynthia A., Maddison, Andrew P., Hartmann, Thomas, Rice, Francine J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue 1
container_start_page 160
container_title Journal of nuclear materials
container_volume 403
creator Burkes, Douglas E.
Papesch, Cynthia A.
Maddison, Andrew P.
Hartmann, Thomas
Rice, Francine J.
description Low-enriched uranium alloyed with 10 wt.% molybdenum is under consideration by the Global Threat Reduction Initiative reactor convert program as a very high density fuel to enable the conversion of high-performance research reactors away from highly-enriched uranium fuels. As with any fuel development program, the thermo-physical properties of the fuel as a function of temperature are extremely important and must be well characterized in order to effectively model and predict fuel behavior under normal and off-normal irradiation conditions. For the alloy system under investigation, the available thermo-physical property data is relatively inconsistent and often lacks appropriate explanation. Available literature on this alloy system comes mainly from studies done during the 1960s and 1970s, and often does not include sufficient information on fabrication history or conditions to draw conclusions for the current application. The current paper has investigated specific heat capacity, coefficient of linear thermal expansion, density, and thermal diffusivity that were then used to calculate alloy thermal conductivity as a function of temperature. The data obtained from this investigation was compared to available literature on similar U–Mo alloys, and in most cases are in good agreement.
doi_str_mv 10.1016/j.jnucmat.2010.06.018
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_993147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002231151000259X</els_id><sourcerecordid>918036373</sourcerecordid><originalsourceid>FETCH-LOGICAL-e299t-a601ed2cb0bb25eb6dc0a6bf01690d1bed7ce8eafea20d4884d9a96dd60413dc3</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EEuXxCUhhgVgljO3EtVcI8ZaK2JS15dgT1VEalzgFdcc_8Id8Ca7a1Uijo7l3DiEXFAoKVNy0Rduv7dKMBYO0A1EAlQdkQuWU56VkcEgmAIzlnNLqmJzE2AJApaCakHK-wGEZ8tViE701XbYawgqH0WPMQpM9fPz9_FLIvsfiKnsLmem6sIln5KgxXcTz_TwlH0-P8_uXfPb-_Hp_N8uRKTXmRgBFx2wNdc0qrIWzYETdpM4KHK3RTS1KNA0aBq6UsnTKKOGcgJJyZ_kpudzdDXH0Olo_ol3Y0PdoR60Up-U0Mdc7JhX_XGMc9dJHi11negzrqBWVwAWf8kRe7UkT06fNYHrro14NfmmGjWYcpJCyStztjsP02pfHYZuMvUXnh22wC15T0Fv1utV79XqrXoPQST3_B88Uefs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918036373</pqid></control><display><type>article</type><title>Thermo-physical properties of DU–10 wt.% Mo alloys</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Burkes, Douglas E. ; Papesch, Cynthia A. ; Maddison, Andrew P. ; Hartmann, Thomas ; Rice, Francine J.</creator><creatorcontrib>Burkes, Douglas E. ; Papesch, Cynthia A. ; Maddison, Andrew P. ; Hartmann, Thomas ; Rice, Francine J. ; Idaho National Laboratory (INL)</creatorcontrib><description>Low-enriched uranium alloyed with 10 wt.% molybdenum is under consideration by the Global Threat Reduction Initiative reactor convert program as a very high density fuel to enable the conversion of high-performance research reactors away from highly-enriched uranium fuels. As with any fuel development program, the thermo-physical properties of the fuel as a function of temperature are extremely important and must be well characterized in order to effectively model and predict fuel behavior under normal and off-normal irradiation conditions. For the alloy system under investigation, the available thermo-physical property data is relatively inconsistent and often lacks appropriate explanation. Available literature on this alloy system comes mainly from studies done during the 1960s and 1970s, and often does not include sufficient information on fabrication history or conditions to draw conclusions for the current application. The current paper has investigated specific heat capacity, coefficient of linear thermal expansion, density, and thermal diffusivity that were then used to calculate alloy thermal conductivity as a function of temperature. The data obtained from this investigation was compared to available literature on similar U–Mo alloys, and in most cases are in good agreement.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2010.06.018</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>ALLOY SYSTEMS ; ALLOYS ; Applied sciences ; CAPACITY ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; FABRICATION ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; IRRADIATION ; low-enriched uranium ; MOLYBDENUM ; NUCLEAR FUEL CYCLE AND FUEL MATERIALS ; Nuclear fuels ; RESEARCH REACTORS ; SPECIFIC HEAT ; THERMAL CONDUCTIVITY ; THERMAL DIFFUSIVITY ; THERMAL EXPANSION ; thermophysical properties ; URANIUM</subject><ispartof>Journal of nuclear materials, 2010-08, Vol.403 (1), p.160-166</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002231151000259X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23086885$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/993147$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Burkes, Douglas E.</creatorcontrib><creatorcontrib>Papesch, Cynthia A.</creatorcontrib><creatorcontrib>Maddison, Andrew P.</creatorcontrib><creatorcontrib>Hartmann, Thomas</creatorcontrib><creatorcontrib>Rice, Francine J.</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><title>Thermo-physical properties of DU–10 wt.% Mo alloys</title><title>Journal of nuclear materials</title><description>Low-enriched uranium alloyed with 10 wt.% molybdenum is under consideration by the Global Threat Reduction Initiative reactor convert program as a very high density fuel to enable the conversion of high-performance research reactors away from highly-enriched uranium fuels. As with any fuel development program, the thermo-physical properties of the fuel as a function of temperature are extremely important and must be well characterized in order to effectively model and predict fuel behavior under normal and off-normal irradiation conditions. For the alloy system under investigation, the available thermo-physical property data is relatively inconsistent and often lacks appropriate explanation. Available literature on this alloy system comes mainly from studies done during the 1960s and 1970s, and often does not include sufficient information on fabrication history or conditions to draw conclusions for the current application. The current paper has investigated specific heat capacity, coefficient of linear thermal expansion, density, and thermal diffusivity that were then used to calculate alloy thermal conductivity as a function of temperature. The data obtained from this investigation was compared to available literature on similar U–Mo alloys, and in most cases are in good agreement.</description><subject>ALLOY SYSTEMS</subject><subject>ALLOYS</subject><subject>Applied sciences</subject><subject>CAPACITY</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>FABRICATION</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>IRRADIATION</subject><subject>low-enriched uranium</subject><subject>MOLYBDENUM</subject><subject>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</subject><subject>Nuclear fuels</subject><subject>RESEARCH REACTORS</subject><subject>SPECIFIC HEAT</subject><subject>THERMAL CONDUCTIVITY</subject><subject>THERMAL DIFFUSIVITY</subject><subject>THERMAL EXPANSION</subject><subject>thermophysical properties</subject><subject>URANIUM</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRS0EEuXxCUhhgVgljO3EtVcI8ZaK2JS15dgT1VEalzgFdcc_8Id8Ca7a1Uijo7l3DiEXFAoKVNy0Rduv7dKMBYO0A1EAlQdkQuWU56VkcEgmAIzlnNLqmJzE2AJApaCakHK-wGEZ8tViE701XbYawgqH0WPMQpM9fPz9_FLIvsfiKnsLmem6sIln5KgxXcTz_TwlH0-P8_uXfPb-_Hp_N8uRKTXmRgBFx2wNdc0qrIWzYETdpM4KHK3RTS1KNA0aBq6UsnTKKOGcgJJyZ_kpudzdDXH0Olo_ol3Y0PdoR60Up-U0Mdc7JhX_XGMc9dJHi11negzrqBWVwAWf8kRe7UkT06fNYHrro14NfmmGjWYcpJCyStztjsP02pfHYZuMvUXnh22wC15T0Fv1utV79XqrXoPQST3_B88Uefs</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Burkes, Douglas E.</creator><creator>Papesch, Cynthia A.</creator><creator>Maddison, Andrew P.</creator><creator>Hartmann, Thomas</creator><creator>Rice, Francine J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20100801</creationdate><title>Thermo-physical properties of DU–10 wt.% Mo alloys</title><author>Burkes, Douglas E. ; Papesch, Cynthia A. ; Maddison, Andrew P. ; Hartmann, Thomas ; Rice, Francine J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e299t-a601ed2cb0bb25eb6dc0a6bf01690d1bed7ce8eafea20d4884d9a96dd60413dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ALLOY SYSTEMS</topic><topic>ALLOYS</topic><topic>Applied sciences</topic><topic>CAPACITY</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>FABRICATION</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>IRRADIATION</topic><topic>low-enriched uranium</topic><topic>MOLYBDENUM</topic><topic>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</topic><topic>Nuclear fuels</topic><topic>RESEARCH REACTORS</topic><topic>SPECIFIC HEAT</topic><topic>THERMAL CONDUCTIVITY</topic><topic>THERMAL DIFFUSIVITY</topic><topic>THERMAL EXPANSION</topic><topic>thermophysical properties</topic><topic>URANIUM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burkes, Douglas E.</creatorcontrib><creatorcontrib>Papesch, Cynthia A.</creatorcontrib><creatorcontrib>Maddison, Andrew P.</creatorcontrib><creatorcontrib>Hartmann, Thomas</creatorcontrib><creatorcontrib>Rice, Francine J.</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><collection>Pascal-Francis</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burkes, Douglas E.</au><au>Papesch, Cynthia A.</au><au>Maddison, Andrew P.</au><au>Hartmann, Thomas</au><au>Rice, Francine J.</au><aucorp>Idaho National Laboratory (INL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-physical properties of DU–10 wt.% Mo alloys</atitle><jtitle>Journal of nuclear materials</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>403</volume><issue>1</issue><spage>160</spage><epage>166</epage><pages>160-166</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>Low-enriched uranium alloyed with 10 wt.% molybdenum is under consideration by the Global Threat Reduction Initiative reactor convert program as a very high density fuel to enable the conversion of high-performance research reactors away from highly-enriched uranium fuels. As with any fuel development program, the thermo-physical properties of the fuel as a function of temperature are extremely important and must be well characterized in order to effectively model and predict fuel behavior under normal and off-normal irradiation conditions. For the alloy system under investigation, the available thermo-physical property data is relatively inconsistent and often lacks appropriate explanation. Available literature on this alloy system comes mainly from studies done during the 1960s and 1970s, and often does not include sufficient information on fabrication history or conditions to draw conclusions for the current application. The current paper has investigated specific heat capacity, coefficient of linear thermal expansion, density, and thermal diffusivity that were then used to calculate alloy thermal conductivity as a function of temperature. The data obtained from this investigation was compared to available literature on similar U–Mo alloys, and in most cases are in good agreement.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2010.06.018</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2010-08, Vol.403 (1), p.160-166
issn 0022-3115
1873-4820
language eng
recordid cdi_osti_scitechconnect_993147
source Elsevier ScienceDirect Journals Complete
subjects ALLOY SYSTEMS
ALLOYS
Applied sciences
CAPACITY
Controled nuclear fusion plants
Energy
Energy. Thermal use of fuels
Exact sciences and technology
FABRICATION
Fission nuclear power plants
Fuels
Installations for energy generation and conversion: thermal and electrical energy
IRRADIATION
low-enriched uranium
MOLYBDENUM
NUCLEAR FUEL CYCLE AND FUEL MATERIALS
Nuclear fuels
RESEARCH REACTORS
SPECIFIC HEAT
THERMAL CONDUCTIVITY
THERMAL DIFFUSIVITY
THERMAL EXPANSION
thermophysical properties
URANIUM
title Thermo-physical properties of DU–10 wt.% Mo alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A12%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-physical%20properties%20of%20DU%E2%80%9310%20wt.%25%20Mo%20alloys&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Burkes,%20Douglas%20E.&rft.aucorp=Idaho%20National%20Laboratory%20(INL)&rft.date=2010-08-01&rft.volume=403&rft.issue=1&rft.spage=160&rft.epage=166&rft.pages=160-166&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2010.06.018&rft_dat=%3Cproquest_osti_%3E918036373%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918036373&rft_id=info:pmid/&rft_els_id=S002231151000259X&rfr_iscdi=true