OPTIMIZED NESTED MARKOV CHAIN MONTE CARLO SAMPLING: THEORY
Metropolis Monte Carlo sampling of a reference potential is used to build a Markov chain in the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is reevaluated at a different level of approximation (the 'full' energy) and a composite move encompassing all of the inte...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 528 |
---|---|
container_issue | |
container_start_page | 525 |
container_title | |
container_volume | 1195 |
creator | Coe, Joshua D Sewell, Thomas D Shaw, M Sam |
description | Metropolis Monte Carlo sampling of a reference potential is used to build a Markov chain in the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is reevaluated at a different level of approximation (the 'full' energy) and a composite move encompassing all of the intervening steps is accepted on the basis of a modified Metropolis criterion. By manipulating the thermodynamic variables characterizing the reference system we maximize the average acceptance probability of composite moves, lengthening significantly the random walk made between consecutive evaluations of the full energy at a fixed acceptance probability. This provides maximally decorrelated samples of the full potential, thereby lowering the total number required to build ensemble averages of a given variance. The efficiency of the method is illustrated using model potentials appropriate to molecular fluids at high pressure. Implications for ab initio or density functional theory (DFT) treatment are discussed. |
doi_str_mv | 10.1063/1.3295190 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_989792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743615038</sourcerecordid><originalsourceid>FETCH-LOGICAL-o248t-5ae2330238bf2de2ef8cafad05b9db18ad45637f3132156b6e3521f764cde033</originalsourceid><addsrcrecordid>eNotjEtPg0AYADc-EmvtwX-AJ0_U3f322RtBLEQeDSVGvRBYllhTi7r0_0tSLzOXySB0S_CSYAEPZAlUc6LxGZoRzokvBRHnaKGlwhI4m0D1BZphrJlPGbxeoWvnPjGmWko1Q6tiUyVZ8h49enm0rSZlQflcvHhhHCS5lxV5FXlhUKaFtw2yTZrk65VXxVFRvt2gy77ZO7v49xxVT1EVxn5arJMwSP2BMjX6vLEUAFNQbU87S22vTNM3Heat7lqimo5xAbIHApRw0QoLnJJeCmY6iwHm6O60Hdy4q53ZjdZ8mOFwsGastdJS06m5PzXfv8PP0bqx_to5Y_f75mCHo6slA0E4BgV_-sRRsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>743615038</pqid></control><display><type>conference_proceeding</type><title>OPTIMIZED NESTED MARKOV CHAIN MONTE CARLO SAMPLING: THEORY</title><source>AIP Journals Complete</source><creator>Coe, Joshua D ; Sewell, Thomas D ; Shaw, M Sam</creator><creatorcontrib>Coe, Joshua D ; Sewell, Thomas D ; Shaw, M Sam ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Metropolis Monte Carlo sampling of a reference potential is used to build a Markov chain in the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is reevaluated at a different level of approximation (the 'full' energy) and a composite move encompassing all of the intervening steps is accepted on the basis of a modified Metropolis criterion. By manipulating the thermodynamic variables characterizing the reference system we maximize the average acceptance probability of composite moves, lengthening significantly the random walk made between consecutive evaluations of the full energy at a fixed acceptance probability. This provides maximally decorrelated samples of the full potential, thereby lowering the total number required to build ensemble averages of a given variance. The efficiency of the method is illustrated using model potentials appropriate to molecular fluids at high pressure. Implications for ab initio or density functional theory (DFT) treatment are discussed.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 9780735407329</identifier><identifier>ISBN: 0735407320</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.3295190</identifier><language>eng</language><publisher>United States</publisher><subject>APPROXIMATIONS ; CHAINS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; EFFICIENCY ; FUNCTIONALS ; PROBABILITY ; SAMPLING ; THERMODYNAMICS</subject><ispartof>Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 2009, Vol.1195, p.525-528</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,314,780,784,789,885,23921,27915,27916</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/989792$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Coe, Joshua D</creatorcontrib><creatorcontrib>Sewell, Thomas D</creatorcontrib><creatorcontrib>Shaw, M Sam</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>OPTIMIZED NESTED MARKOV CHAIN MONTE CARLO SAMPLING: THEORY</title><title>Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter</title><description>Metropolis Monte Carlo sampling of a reference potential is used to build a Markov chain in the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is reevaluated at a different level of approximation (the 'full' energy) and a composite move encompassing all of the intervening steps is accepted on the basis of a modified Metropolis criterion. By manipulating the thermodynamic variables characterizing the reference system we maximize the average acceptance probability of composite moves, lengthening significantly the random walk made between consecutive evaluations of the full energy at a fixed acceptance probability. This provides maximally decorrelated samples of the full potential, thereby lowering the total number required to build ensemble averages of a given variance. The efficiency of the method is illustrated using model potentials appropriate to molecular fluids at high pressure. Implications for ab initio or density functional theory (DFT) treatment are discussed.</description><subject>APPROXIMATIONS</subject><subject>CHAINS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>EFFICIENCY</subject><subject>FUNCTIONALS</subject><subject>PROBABILITY</subject><subject>SAMPLING</subject><subject>THERMODYNAMICS</subject><issn>0094-243X</issn><issn>1551-7616</issn><isbn>9780735407329</isbn><isbn>0735407320</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjEtPg0AYADc-EmvtwX-AJ0_U3f322RtBLEQeDSVGvRBYllhTi7r0_0tSLzOXySB0S_CSYAEPZAlUc6LxGZoRzokvBRHnaKGlwhI4m0D1BZphrJlPGbxeoWvnPjGmWko1Q6tiUyVZ8h49enm0rSZlQflcvHhhHCS5lxV5FXlhUKaFtw2yTZrk65VXxVFRvt2gy77ZO7v49xxVT1EVxn5arJMwSP2BMjX6vLEUAFNQbU87S22vTNM3Heat7lqimo5xAbIHApRw0QoLnJJeCmY6iwHm6O60Hdy4q53ZjdZ8mOFwsGastdJS06m5PzXfv8PP0bqx_to5Y_f75mCHo6slA0E4BgV_-sRRsg</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Coe, Joshua D</creator><creator>Sewell, Thomas D</creator><creator>Shaw, M Sam</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20090101</creationdate><title>OPTIMIZED NESTED MARKOV CHAIN MONTE CARLO SAMPLING: THEORY</title><author>Coe, Joshua D ; Sewell, Thomas D ; Shaw, M Sam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o248t-5ae2330238bf2de2ef8cafad05b9db18ad45637f3132156b6e3521f764cde033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>APPROXIMATIONS</topic><topic>CHAINS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>EFFICIENCY</topic><topic>FUNCTIONALS</topic><topic>PROBABILITY</topic><topic>SAMPLING</topic><topic>THERMODYNAMICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coe, Joshua D</creatorcontrib><creatorcontrib>Sewell, Thomas D</creatorcontrib><creatorcontrib>Shaw, M Sam</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coe, Joshua D</au><au>Sewell, Thomas D</au><au>Shaw, M Sam</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>OPTIMIZED NESTED MARKOV CHAIN MONTE CARLO SAMPLING: THEORY</atitle><btitle>Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter</btitle><date>2009-01-01</date><risdate>2009</risdate><volume>1195</volume><spage>525</spage><epage>528</epage><pages>525-528</pages><issn>0094-243X</issn><eissn>1551-7616</eissn><isbn>9780735407329</isbn><isbn>0735407320</isbn><abstract>Metropolis Monte Carlo sampling of a reference potential is used to build a Markov chain in the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is reevaluated at a different level of approximation (the 'full' energy) and a composite move encompassing all of the intervening steps is accepted on the basis of a modified Metropolis criterion. By manipulating the thermodynamic variables characterizing the reference system we maximize the average acceptance probability of composite moves, lengthening significantly the random walk made between consecutive evaluations of the full energy at a fixed acceptance probability. This provides maximally decorrelated samples of the full potential, thereby lowering the total number required to build ensemble averages of a given variance. The efficiency of the method is illustrated using model potentials appropriate to molecular fluids at high pressure. Implications for ab initio or density functional theory (DFT) treatment are discussed.</abstract><cop>United States</cop><doi>10.1063/1.3295190</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 2009, Vol.1195, p.525-528 |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_osti_scitechconnect_989792 |
source | AIP Journals Complete |
subjects | APPROXIMATIONS CHAINS CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY EFFICIENCY FUNCTIONALS PROBABILITY SAMPLING THERMODYNAMICS |
title | OPTIMIZED NESTED MARKOV CHAIN MONTE CARLO SAMPLING: THEORY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=OPTIMIZED%20NESTED%20MARKOV%20CHAIN%20MONTE%20CARLO%20SAMPLING:%20THEORY&rft.btitle=Proceedings%20of%20the%20Conference%20of%20the%20American%20Physical%20Society%20Topical%20Group%20on%20Shock%20Compression%20of%20Condensed%20Matter&rft.au=Coe,%20Joshua%20D&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2009-01-01&rft.volume=1195&rft.spage=525&rft.epage=528&rft.pages=525-528&rft.issn=0094-243X&rft.eissn=1551-7616&rft.isbn=9780735407329&rft.isbn_list=0735407320&rft_id=info:doi/10.1063/1.3295190&rft_dat=%3Cproquest_osti_%3E743615038%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743615038&rft_id=info:pmid/&rfr_iscdi=true |