OPTIMIZED NESTED MARKOV CHAIN MONTE CARLO SAMPLING: THEORY

Metropolis Monte Carlo sampling of a reference potential is used to build a Markov chain in the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is reevaluated at a different level of approximation (the 'full' energy) and a composite move encompassing all of the inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Coe, Joshua D, Sewell, Thomas D, Shaw, M Sam
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 528
container_issue
container_start_page 525
container_title
container_volume 1195
creator Coe, Joshua D
Sewell, Thomas D
Shaw, M Sam
description Metropolis Monte Carlo sampling of a reference potential is used to build a Markov chain in the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is reevaluated at a different level of approximation (the 'full' energy) and a composite move encompassing all of the intervening steps is accepted on the basis of a modified Metropolis criterion. By manipulating the thermodynamic variables characterizing the reference system we maximize the average acceptance probability of composite moves, lengthening significantly the random walk made between consecutive evaluations of the full energy at a fixed acceptance probability. This provides maximally decorrelated samples of the full potential, thereby lowering the total number required to build ensemble averages of a given variance. The efficiency of the method is illustrated using model potentials appropriate to molecular fluids at high pressure. Implications for ab initio or density functional theory (DFT) treatment are discussed.
doi_str_mv 10.1063/1.3295190
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_989792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743615038</sourcerecordid><originalsourceid>FETCH-LOGICAL-o248t-5ae2330238bf2de2ef8cafad05b9db18ad45637f3132156b6e3521f764cde033</originalsourceid><addsrcrecordid>eNotjEtPg0AYADc-EmvtwX-AJ0_U3f322RtBLEQeDSVGvRBYllhTi7r0_0tSLzOXySB0S_CSYAEPZAlUc6LxGZoRzokvBRHnaKGlwhI4m0D1BZphrJlPGbxeoWvnPjGmWko1Q6tiUyVZ8h49enm0rSZlQflcvHhhHCS5lxV5FXlhUKaFtw2yTZrk65VXxVFRvt2gy77ZO7v49xxVT1EVxn5arJMwSP2BMjX6vLEUAFNQbU87S22vTNM3Heat7lqimo5xAbIHApRw0QoLnJJeCmY6iwHm6O60Hdy4q53ZjdZ8mOFwsGastdJS06m5PzXfv8PP0bqx_to5Y_f75mCHo6slA0E4BgV_-sRRsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>743615038</pqid></control><display><type>conference_proceeding</type><title>OPTIMIZED NESTED MARKOV CHAIN MONTE CARLO SAMPLING: THEORY</title><source>AIP Journals Complete</source><creator>Coe, Joshua D ; Sewell, Thomas D ; Shaw, M Sam</creator><creatorcontrib>Coe, Joshua D ; Sewell, Thomas D ; Shaw, M Sam ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Metropolis Monte Carlo sampling of a reference potential is used to build a Markov chain in the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is reevaluated at a different level of approximation (the 'full' energy) and a composite move encompassing all of the intervening steps is accepted on the basis of a modified Metropolis criterion. By manipulating the thermodynamic variables characterizing the reference system we maximize the average acceptance probability of composite moves, lengthening significantly the random walk made between consecutive evaluations of the full energy at a fixed acceptance probability. This provides maximally decorrelated samples of the full potential, thereby lowering the total number required to build ensemble averages of a given variance. The efficiency of the method is illustrated using model potentials appropriate to molecular fluids at high pressure. Implications for ab initio or density functional theory (DFT) treatment are discussed.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 9780735407329</identifier><identifier>ISBN: 0735407320</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.3295190</identifier><language>eng</language><publisher>United States</publisher><subject>APPROXIMATIONS ; CHAINS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; EFFICIENCY ; FUNCTIONALS ; PROBABILITY ; SAMPLING ; THERMODYNAMICS</subject><ispartof>Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 2009, Vol.1195, p.525-528</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,314,780,784,789,885,23921,27915,27916</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/989792$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Coe, Joshua D</creatorcontrib><creatorcontrib>Sewell, Thomas D</creatorcontrib><creatorcontrib>Shaw, M Sam</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>OPTIMIZED NESTED MARKOV CHAIN MONTE CARLO SAMPLING: THEORY</title><title>Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter</title><description>Metropolis Monte Carlo sampling of a reference potential is used to build a Markov chain in the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is reevaluated at a different level of approximation (the 'full' energy) and a composite move encompassing all of the intervening steps is accepted on the basis of a modified Metropolis criterion. By manipulating the thermodynamic variables characterizing the reference system we maximize the average acceptance probability of composite moves, lengthening significantly the random walk made between consecutive evaluations of the full energy at a fixed acceptance probability. This provides maximally decorrelated samples of the full potential, thereby lowering the total number required to build ensemble averages of a given variance. The efficiency of the method is illustrated using model potentials appropriate to molecular fluids at high pressure. Implications for ab initio or density functional theory (DFT) treatment are discussed.</description><subject>APPROXIMATIONS</subject><subject>CHAINS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>EFFICIENCY</subject><subject>FUNCTIONALS</subject><subject>PROBABILITY</subject><subject>SAMPLING</subject><subject>THERMODYNAMICS</subject><issn>0094-243X</issn><issn>1551-7616</issn><isbn>9780735407329</isbn><isbn>0735407320</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjEtPg0AYADc-EmvtwX-AJ0_U3f322RtBLEQeDSVGvRBYllhTi7r0_0tSLzOXySB0S_CSYAEPZAlUc6LxGZoRzokvBRHnaKGlwhI4m0D1BZphrJlPGbxeoWvnPjGmWko1Q6tiUyVZ8h49enm0rSZlQflcvHhhHCS5lxV5FXlhUKaFtw2yTZrk65VXxVFRvt2gy77ZO7v49xxVT1EVxn5arJMwSP2BMjX6vLEUAFNQbU87S22vTNM3Heat7lqimo5xAbIHApRw0QoLnJJeCmY6iwHm6O60Hdy4q53ZjdZ8mOFwsGastdJS06m5PzXfv8PP0bqx_to5Y_f75mCHo6slA0E4BgV_-sRRsg</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Coe, Joshua D</creator><creator>Sewell, Thomas D</creator><creator>Shaw, M Sam</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20090101</creationdate><title>OPTIMIZED NESTED MARKOV CHAIN MONTE CARLO SAMPLING: THEORY</title><author>Coe, Joshua D ; Sewell, Thomas D ; Shaw, M Sam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o248t-5ae2330238bf2de2ef8cafad05b9db18ad45637f3132156b6e3521f764cde033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>APPROXIMATIONS</topic><topic>CHAINS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>EFFICIENCY</topic><topic>FUNCTIONALS</topic><topic>PROBABILITY</topic><topic>SAMPLING</topic><topic>THERMODYNAMICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coe, Joshua D</creatorcontrib><creatorcontrib>Sewell, Thomas D</creatorcontrib><creatorcontrib>Shaw, M Sam</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coe, Joshua D</au><au>Sewell, Thomas D</au><au>Shaw, M Sam</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>OPTIMIZED NESTED MARKOV CHAIN MONTE CARLO SAMPLING: THEORY</atitle><btitle>Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter</btitle><date>2009-01-01</date><risdate>2009</risdate><volume>1195</volume><spage>525</spage><epage>528</epage><pages>525-528</pages><issn>0094-243X</issn><eissn>1551-7616</eissn><isbn>9780735407329</isbn><isbn>0735407320</isbn><abstract>Metropolis Monte Carlo sampling of a reference potential is used to build a Markov chain in the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is reevaluated at a different level of approximation (the 'full' energy) and a composite move encompassing all of the intervening steps is accepted on the basis of a modified Metropolis criterion. By manipulating the thermodynamic variables characterizing the reference system we maximize the average acceptance probability of composite moves, lengthening significantly the random walk made between consecutive evaluations of the full energy at a fixed acceptance probability. This provides maximally decorrelated samples of the full potential, thereby lowering the total number required to build ensemble averages of a given variance. The efficiency of the method is illustrated using model potentials appropriate to molecular fluids at high pressure. Implications for ab initio or density functional theory (DFT) treatment are discussed.</abstract><cop>United States</cop><doi>10.1063/1.3295190</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 2009, Vol.1195, p.525-528
issn 0094-243X
1551-7616
language eng
recordid cdi_osti_scitechconnect_989792
source AIP Journals Complete
subjects APPROXIMATIONS
CHAINS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
EFFICIENCY
FUNCTIONALS
PROBABILITY
SAMPLING
THERMODYNAMICS
title OPTIMIZED NESTED MARKOV CHAIN MONTE CARLO SAMPLING: THEORY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=OPTIMIZED%20NESTED%20MARKOV%20CHAIN%20MONTE%20CARLO%20SAMPLING:%20THEORY&rft.btitle=Proceedings%20of%20the%20Conference%20of%20the%20American%20Physical%20Society%20Topical%20Group%20on%20Shock%20Compression%20of%20Condensed%20Matter&rft.au=Coe,%20Joshua%20D&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2009-01-01&rft.volume=1195&rft.spage=525&rft.epage=528&rft.pages=525-528&rft.issn=0094-243X&rft.eissn=1551-7616&rft.isbn=9780735407329&rft.isbn_list=0735407320&rft_id=info:doi/10.1063/1.3295190&rft_dat=%3Cproquest_osti_%3E743615038%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743615038&rft_id=info:pmid/&rfr_iscdi=true