AEROSOL PROPERTIES AND PROCESSES: A Path from Field and Laboratory Measurements to Global Climate Models

Aerosol particles in the lower atmosphere exert a substantial influence on climate and climate change through a variety of complex mechanisms. Consequently, there is a need to represent these influences in global climate models, and models have begun to include representations of these influences. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the American Meteorological Society 2007-07, Vol.88 (7), p.1059-1083
Hauptverfasser: Ghan, Steven J., Schwartz, Stephen E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aerosol particles in the lower atmosphere exert a substantial influence on climate and climate change through a variety of complex mechanisms. Consequently, there is a need to represent these influences in global climate models, and models have begun to include representations of these influences. However, the present treatment of aerosols in global climate models is highly simplified, omitting many processes and feedbacks that are thought to be climatically important. Thus, there is need for substantial improvement. Here we describe the strategy of the U.S. Department of Energy for improving representation of the properties, processes, and effects of tropospheric aerosols in global climate models. The strategy begins with a foundation of field and laboratory measurements that provide the basis for modules describing specific aerosol properties and processes. These modules are then integrated into regional aerosol models, which are evaluated by comparison with field measurements. Issues of scale are then addressed so that the modules can be applied to global aerosol models, which are evaluated by comparison with satellite retrievals and other observations. Finally, the validated set of modules is applied in global climate models for multicentury simulations. This strategy is expected to be applied to successive generations of global climate models.
ISSN:0003-0007
1520-0477
DOI:10.1175/bams-88-7-1059