Unusual Lattice-Magnetism Connections in MnBi Nanorods

Lattice parameter, particle size, and thermal expansion results obtained from high‐temperature synchrotron transmission X‐ray diffraction are reported for magnetostructual NiAs‐type MnBi nanorods embedded in a Bi matrix. The structural data are consistent with elevated‐temperature magnetic measureme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2009-04, Vol.19 (7), p.1100-1105
Hauptverfasser: Kang, Kyongha, Yoon, Won-Sub, Park, Sangmoon, Moodenbaugh, Arnold R., Lewis, Laura H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1105
container_issue 7
container_start_page 1100
container_title Advanced functional materials
container_volume 19
creator Kang, Kyongha
Yoon, Won-Sub
Park, Sangmoon
Moodenbaugh, Arnold R.
Lewis, Laura H.
description Lattice parameter, particle size, and thermal expansion results obtained from high‐temperature synchrotron transmission X‐ray diffraction are reported for magnetostructual NiAs‐type MnBi nanorods embedded in a Bi matrix. The structural data are consistent with elevated‐temperature magnetic measurements that indicate a first‐order nanorod Curie transition at 520 K, significantly depressed from the bulk MnBi Curie temperature of 633 K. The data suggest that the unit cell volume dependence of the magnetic behavior—also known as the volume exchange striction—of the MnBi compound is the determining factor underlying this phenomenon. The results imply that materials with magnetostructural transitions of technological interest may be altered by strain effects to tailor the interatomic distances towards the critical transition values. MnBi nanorods embedded in a Bi matrix exhibit a magnetostructural transition at a significantly lower temperature than that found in the bulk compound, as evidenced by magnetization and synchrotron X‐ray diffraction measurements obtained as a function of temperature. These results imply that materials with magnetostructural transitions of technological interest may be tailored by strain.
doi_str_mv 10.1002/adfm.200800879
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_980666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34278798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4249-aad2035a77a38cc198ea1fd3d9129c4b9325407bbb1d8786ec8e40fa4e9f7efd3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUQC0EEqWwMoeFLcWvxPZYCi2PpiwU2CzHccCQOiV2BP17UgVVbEiWrodzrq4OAKcIjhCE-EIV5WqEIeTdY2IPDFCK0phAzPd3f_RyCI68f4cQMUboAKRL1_pWVdFchWC1iTP16kywfhVNaueMDrZ2PrIuytyljRbK1U1d-GNwUKrKm5PfOQTL6fXj5CaeP8xuJ-N5rCmmIlaqwJAkijFFuNZIcKNQWZBCICw0zQXBCYUsz3NUcMZTo7mhsFTUiJKZDhyCs35v7YOVXttg9JvuD5OCwzRNO-a8Z9ZN_dkaH-TKem2qSjlTt14SilkXhHfgqAd1U3vfmFKuG7tSzUYiKLcJ5Tah3CXsBNELX7Yym39oOb6aZn_duHetD-Z756rmQ6aMsEQ-L2aSiKcsub-DckF-AJ5-hAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34278798</pqid></control><display><type>article</type><title>Unusual Lattice-Magnetism Connections in MnBi Nanorods</title><source>Wiley Online Library</source><creator>Kang, Kyongha ; Yoon, Won-Sub ; Park, Sangmoon ; Moodenbaugh, Arnold R. ; Lewis, Laura H.</creator><creatorcontrib>Kang, Kyongha ; Yoon, Won-Sub ; Park, Sangmoon ; Moodenbaugh, Arnold R. ; Lewis, Laura H. ; Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><description>Lattice parameter, particle size, and thermal expansion results obtained from high‐temperature synchrotron transmission X‐ray diffraction are reported for magnetostructual NiAs‐type MnBi nanorods embedded in a Bi matrix. The structural data are consistent with elevated‐temperature magnetic measurements that indicate a first‐order nanorod Curie transition at 520 K, significantly depressed from the bulk MnBi Curie temperature of 633 K. The data suggest that the unit cell volume dependence of the magnetic behavior—also known as the volume exchange striction—of the MnBi compound is the determining factor underlying this phenomenon. The results imply that materials with magnetostructural transitions of technological interest may be altered by strain effects to tailor the interatomic distances towards the critical transition values. MnBi nanorods embedded in a Bi matrix exhibit a magnetostructural transition at a significantly lower temperature than that found in the bulk compound, as evidenced by magnetization and synchrotron X‐ray diffraction measurements obtained as a function of temperature. These results imply that materials with magnetostructural transitions of technological interest may be tailored by strain.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.200800879</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>BEHAVIOR ; CURIE POINT ; DATA ; INTERATOMIC DISTANCES ; LATTICE PARAMETERS ; magnetostructural transitions ; MATERIALS ; MnBi nanorods ; national synchrotron light source ; PARTICLE ACCELERATORS ; PARTICLE SIZE ; STRAINS ; SYNCHROTRONS ; TEMPERATURE RANGE 0400-1000 K ; THERMAL EXPANSION ; TRANSMISSION ; UNITS ; VOLUME ; X-RAY DIFFRACTION</subject><ispartof>Advanced functional materials, 2009-04, Vol.19 (7), p.1100-1105</ispartof><rights>Copyright © 2009 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4249-aad2035a77a38cc198ea1fd3d9129c4b9325407bbb1d8786ec8e40fa4e9f7efd3</citedby><cites>FETCH-LOGICAL-c4249-aad2035a77a38cc198ea1fd3d9129c4b9325407bbb1d8786ec8e40fa4e9f7efd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.200800879$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.200800879$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/980666$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Kyongha</creatorcontrib><creatorcontrib>Yoon, Won-Sub</creatorcontrib><creatorcontrib>Park, Sangmoon</creatorcontrib><creatorcontrib>Moodenbaugh, Arnold R.</creatorcontrib><creatorcontrib>Lewis, Laura H.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><title>Unusual Lattice-Magnetism Connections in MnBi Nanorods</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Lattice parameter, particle size, and thermal expansion results obtained from high‐temperature synchrotron transmission X‐ray diffraction are reported for magnetostructual NiAs‐type MnBi nanorods embedded in a Bi matrix. The structural data are consistent with elevated‐temperature magnetic measurements that indicate a first‐order nanorod Curie transition at 520 K, significantly depressed from the bulk MnBi Curie temperature of 633 K. The data suggest that the unit cell volume dependence of the magnetic behavior—also known as the volume exchange striction—of the MnBi compound is the determining factor underlying this phenomenon. The results imply that materials with magnetostructural transitions of technological interest may be altered by strain effects to tailor the interatomic distances towards the critical transition values. MnBi nanorods embedded in a Bi matrix exhibit a magnetostructural transition at a significantly lower temperature than that found in the bulk compound, as evidenced by magnetization and synchrotron X‐ray diffraction measurements obtained as a function of temperature. These results imply that materials with magnetostructural transitions of technological interest may be tailored by strain.</description><subject>BEHAVIOR</subject><subject>CURIE POINT</subject><subject>DATA</subject><subject>INTERATOMIC DISTANCES</subject><subject>LATTICE PARAMETERS</subject><subject>magnetostructural transitions</subject><subject>MATERIALS</subject><subject>MnBi nanorods</subject><subject>national synchrotron light source</subject><subject>PARTICLE ACCELERATORS</subject><subject>PARTICLE SIZE</subject><subject>STRAINS</subject><subject>SYNCHROTRONS</subject><subject>TEMPERATURE RANGE 0400-1000 K</subject><subject>THERMAL EXPANSION</subject><subject>TRANSMISSION</subject><subject>UNITS</subject><subject>VOLUME</subject><subject>X-RAY DIFFRACTION</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUQC0EEqWwMoeFLcWvxPZYCi2PpiwU2CzHccCQOiV2BP17UgVVbEiWrodzrq4OAKcIjhCE-EIV5WqEIeTdY2IPDFCK0phAzPd3f_RyCI68f4cQMUboAKRL1_pWVdFchWC1iTP16kywfhVNaueMDrZ2PrIuytyljRbK1U1d-GNwUKrKm5PfOQTL6fXj5CaeP8xuJ-N5rCmmIlaqwJAkijFFuNZIcKNQWZBCICw0zQXBCYUsz3NUcMZTo7mhsFTUiJKZDhyCs35v7YOVXttg9JvuD5OCwzRNO-a8Z9ZN_dkaH-TKem2qSjlTt14SilkXhHfgqAd1U3vfmFKuG7tSzUYiKLcJ5Tah3CXsBNELX7Yym39oOb6aZn_duHetD-Z756rmQ6aMsEQ-L2aSiKcsub-DckF-AJ5-hAQ</recordid><startdate>20090409</startdate><enddate>20090409</enddate><creator>Kang, Kyongha</creator><creator>Yoon, Won-Sub</creator><creator>Park, Sangmoon</creator><creator>Moodenbaugh, Arnold R.</creator><creator>Lewis, Laura H.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20090409</creationdate><title>Unusual Lattice-Magnetism Connections in MnBi Nanorods</title><author>Kang, Kyongha ; Yoon, Won-Sub ; Park, Sangmoon ; Moodenbaugh, Arnold R. ; Lewis, Laura H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4249-aad2035a77a38cc198ea1fd3d9129c4b9325407bbb1d8786ec8e40fa4e9f7efd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>BEHAVIOR</topic><topic>CURIE POINT</topic><topic>DATA</topic><topic>INTERATOMIC DISTANCES</topic><topic>LATTICE PARAMETERS</topic><topic>magnetostructural transitions</topic><topic>MATERIALS</topic><topic>MnBi nanorods</topic><topic>national synchrotron light source</topic><topic>PARTICLE ACCELERATORS</topic><topic>PARTICLE SIZE</topic><topic>STRAINS</topic><topic>SYNCHROTRONS</topic><topic>TEMPERATURE RANGE 0400-1000 K</topic><topic>THERMAL EXPANSION</topic><topic>TRANSMISSION</topic><topic>UNITS</topic><topic>VOLUME</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Kyongha</creatorcontrib><creatorcontrib>Yoon, Won-Sub</creatorcontrib><creatorcontrib>Park, Sangmoon</creatorcontrib><creatorcontrib>Moodenbaugh, Arnold R.</creatorcontrib><creatorcontrib>Lewis, Laura H.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Kyongha</au><au>Yoon, Won-Sub</au><au>Park, Sangmoon</au><au>Moodenbaugh, Arnold R.</au><au>Lewis, Laura H.</au><aucorp>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unusual Lattice-Magnetism Connections in MnBi Nanorods</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2009-04-09</date><risdate>2009</risdate><volume>19</volume><issue>7</issue><spage>1100</spage><epage>1105</epage><pages>1100-1105</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Lattice parameter, particle size, and thermal expansion results obtained from high‐temperature synchrotron transmission X‐ray diffraction are reported for magnetostructual NiAs‐type MnBi nanorods embedded in a Bi matrix. The structural data are consistent with elevated‐temperature magnetic measurements that indicate a first‐order nanorod Curie transition at 520 K, significantly depressed from the bulk MnBi Curie temperature of 633 K. The data suggest that the unit cell volume dependence of the magnetic behavior—also known as the volume exchange striction—of the MnBi compound is the determining factor underlying this phenomenon. The results imply that materials with magnetostructural transitions of technological interest may be altered by strain effects to tailor the interatomic distances towards the critical transition values. MnBi nanorods embedded in a Bi matrix exhibit a magnetostructural transition at a significantly lower temperature than that found in the bulk compound, as evidenced by magnetization and synchrotron X‐ray diffraction measurements obtained as a function of temperature. These results imply that materials with magnetostructural transitions of technological interest may be tailored by strain.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.200800879</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2009-04, Vol.19 (7), p.1100-1105
issn 1616-301X
1616-3028
language eng
recordid cdi_osti_scitechconnect_980666
source Wiley Online Library
subjects BEHAVIOR
CURIE POINT
DATA
INTERATOMIC DISTANCES
LATTICE PARAMETERS
magnetostructural transitions
MATERIALS
MnBi nanorods
national synchrotron light source
PARTICLE ACCELERATORS
PARTICLE SIZE
STRAINS
SYNCHROTRONS
TEMPERATURE RANGE 0400-1000 K
THERMAL EXPANSION
TRANSMISSION
UNITS
VOLUME
X-RAY DIFFRACTION
title Unusual Lattice-Magnetism Connections in MnBi Nanorods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unusual%20Lattice-Magnetism%20Connections%20in%20MnBi%20Nanorods&rft.jtitle=Advanced%20functional%20materials&rft.au=Kang,%20Kyongha&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)%20National%20Synchrotron%20Light%20Source&rft.date=2009-04-09&rft.volume=19&rft.issue=7&rft.spage=1100&rft.epage=1105&rft.pages=1100-1105&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.200800879&rft_dat=%3Cproquest_osti_%3E34278798%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34278798&rft_id=info:pmid/&rfr_iscdi=true