Solid-State Hydriding Mechanism in the LiBH4 + MgH2 System
The LiBH4 + MgH2 system has great potential in reversible hydrogen storage for fuel cell vehicles. However, it has always been dehydrogenated and rehydrogenated in the liquid state until recently. The solid-state hydriding and dehydriding are necessary in order to achieve hydrogen uptake and release...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2010-05, Vol.114 (17), p.8089-8098 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8098 |
---|---|
container_issue | 17 |
container_start_page | 8089 |
container_title | Journal of physical chemistry. C |
container_volume | 114 |
creator | Shaw, Leon L Wan, Xuefei Hu, Jian Zhi Kwak, Ja Hun Yang, Zhenguo |
description | The LiBH4 + MgH2 system has great potential in reversible hydrogen storage for fuel cell vehicles. However, it has always been dehydrogenated and rehydrogenated in the liquid state until recently. The solid-state hydriding and dehydriding are necessary in order to achieve hydrogen uptake and release near ambient temperature. In this study, the solid-state hydriding mechanism of 2LiH + MgB2 mixtures has been investigated. It is found that the solid-state hydriding proceeds in two elementary steps. The first step is the ion exchange between the Mg2+ and Li+ ions in the MgB2 crystal to form an intermediate compound (Mg1−x Li2x )B2. The second step is the continuous ion exchange and simultaneous hydrogenation of (Mg1−x Li2x )B2 to form LiBH4 and MgH2. This finding is consistent with the observed diffusion-controlled hydriding kinetics. |
doi_str_mv | 10.1021/jp1003837 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_979846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a605900679</sourcerecordid><originalsourceid>FETCH-LOGICAL-a211t-90b733ff3d8d1044a345b14ec3ed882dca1ac1fff767ac4b63a5f62ef8aaab603</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EEqUw8A_MwIQCfnlOnLBBBQQpFUNgjl780TpqE1Sbof-eoKJO9w5XV0eHsWsQ9yBSeOi_QQgsUJ2wGZSYJkpm2emxS3XOLkLohchQAM7YYzNuvEmaSNHyam923vhhxZdWr2nwYcv9wOPa8to_V5Lf8eWqSnmzD9FuL9mZo02wV_85Z1-vL5-LKqk_3t4XT3VCKUBMStEpROfQFAaElIQy60BajdYURWo0AWlwzqlckZZdjpS5PLWuIKIuFzhnN4ffMUTfBu3jBKfHYbA6tqUqC5lPm9vDhnRo-_FnN0xELYj2T0p7lIK_CglSGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solid-State Hydriding Mechanism in the LiBH4 + MgH2 System</title><source>American Chemical Society Journals</source><creator>Shaw, Leon L ; Wan, Xuefei ; Hu, Jian Zhi ; Kwak, Ja Hun ; Yang, Zhenguo</creator><creatorcontrib>Shaw, Leon L ; Wan, Xuefei ; Hu, Jian Zhi ; Kwak, Ja Hun ; Yang, Zhenguo ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>The LiBH4 + MgH2 system has great potential in reversible hydrogen storage for fuel cell vehicles. However, it has always been dehydrogenated and rehydrogenated in the liquid state until recently. The solid-state hydriding and dehydriding are necessary in order to achieve hydrogen uptake and release near ambient temperature. In this study, the solid-state hydriding mechanism of 2LiH + MgB2 mixtures has been investigated. It is found that the solid-state hydriding proceeds in two elementary steps. The first step is the ion exchange between the Mg2+ and Li+ ions in the MgB2 crystal to form an intermediate compound (Mg1−x Li2x )B2. The second step is the continuous ion exchange and simultaneous hydrogenation of (Mg1−x Li2x )B2 to form LiBH4 and MgH2. This finding is consistent with the observed diffusion-controlled hydriding kinetics.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp1003837</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>08 HYDROGEN ; 30 DIRECT ENERGY CONVERSION ; AMBIENT TEMPERATURE ; C: Energy Conversion and Storage ; Environmental Molecular Sciences Laboratory ; FUEL CELLS ; HYDROGEN ; HYDROGEN STORAGE ; HYDROGENATION ; ION EXCHANGE ; KINETICS ; MIXTURES</subject><ispartof>Journal of physical chemistry. C, 2010-05, Vol.114 (17), p.8089-8098</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp1003837$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp1003837$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/979846$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaw, Leon L</creatorcontrib><creatorcontrib>Wan, Xuefei</creatorcontrib><creatorcontrib>Hu, Jian Zhi</creatorcontrib><creatorcontrib>Kwak, Ja Hun</creatorcontrib><creatorcontrib>Yang, Zhenguo</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Solid-State Hydriding Mechanism in the LiBH4 + MgH2 System</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The LiBH4 + MgH2 system has great potential in reversible hydrogen storage for fuel cell vehicles. However, it has always been dehydrogenated and rehydrogenated in the liquid state until recently. The solid-state hydriding and dehydriding are necessary in order to achieve hydrogen uptake and release near ambient temperature. In this study, the solid-state hydriding mechanism of 2LiH + MgB2 mixtures has been investigated. It is found that the solid-state hydriding proceeds in two elementary steps. The first step is the ion exchange between the Mg2+ and Li+ ions in the MgB2 crystal to form an intermediate compound (Mg1−x Li2x )B2. The second step is the continuous ion exchange and simultaneous hydrogenation of (Mg1−x Li2x )B2 to form LiBH4 and MgH2. This finding is consistent with the observed diffusion-controlled hydriding kinetics.</description><subject>08 HYDROGEN</subject><subject>30 DIRECT ENERGY CONVERSION</subject><subject>AMBIENT TEMPERATURE</subject><subject>C: Energy Conversion and Storage</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>FUEL CELLS</subject><subject>HYDROGEN</subject><subject>HYDROGEN STORAGE</subject><subject>HYDROGENATION</subject><subject>ION EXCHANGE</subject><subject>KINETICS</subject><subject>MIXTURES</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAURS0EEqUw8A_MwIQCfnlOnLBBBQQpFUNgjl780TpqE1Sbof-eoKJO9w5XV0eHsWsQ9yBSeOi_QQgsUJ2wGZSYJkpm2emxS3XOLkLohchQAM7YYzNuvEmaSNHyam923vhhxZdWr2nwYcv9wOPa8to_V5Lf8eWqSnmzD9FuL9mZo02wV_85Z1-vL5-LKqk_3t4XT3VCKUBMStEpROfQFAaElIQy60BajdYURWo0AWlwzqlckZZdjpS5PLWuIKIuFzhnN4ffMUTfBu3jBKfHYbA6tqUqC5lPm9vDhnRo-_FnN0xELYj2T0p7lIK_CglSGA</recordid><startdate>20100506</startdate><enddate>20100506</enddate><creator>Shaw, Leon L</creator><creator>Wan, Xuefei</creator><creator>Hu, Jian Zhi</creator><creator>Kwak, Ja Hun</creator><creator>Yang, Zhenguo</creator><general>American Chemical Society</general><scope>OTOTI</scope></search><sort><creationdate>20100506</creationdate><title>Solid-State Hydriding Mechanism in the LiBH4 + MgH2 System</title><author>Shaw, Leon L ; Wan, Xuefei ; Hu, Jian Zhi ; Kwak, Ja Hun ; Yang, Zhenguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a211t-90b733ff3d8d1044a345b14ec3ed882dca1ac1fff767ac4b63a5f62ef8aaab603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>08 HYDROGEN</topic><topic>30 DIRECT ENERGY CONVERSION</topic><topic>AMBIENT TEMPERATURE</topic><topic>C: Energy Conversion and Storage</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>FUEL CELLS</topic><topic>HYDROGEN</topic><topic>HYDROGEN STORAGE</topic><topic>HYDROGENATION</topic><topic>ION EXCHANGE</topic><topic>KINETICS</topic><topic>MIXTURES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaw, Leon L</creatorcontrib><creatorcontrib>Wan, Xuefei</creatorcontrib><creatorcontrib>Hu, Jian Zhi</creatorcontrib><creatorcontrib>Kwak, Ja Hun</creatorcontrib><creatorcontrib>Yang, Zhenguo</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaw, Leon L</au><au>Wan, Xuefei</au><au>Hu, Jian Zhi</au><au>Kwak, Ja Hun</au><au>Yang, Zhenguo</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-State Hydriding Mechanism in the LiBH4 + MgH2 System</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2010-05-06</date><risdate>2010</risdate><volume>114</volume><issue>17</issue><spage>8089</spage><epage>8098</epage><pages>8089-8098</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The LiBH4 + MgH2 system has great potential in reversible hydrogen storage for fuel cell vehicles. However, it has always been dehydrogenated and rehydrogenated in the liquid state until recently. The solid-state hydriding and dehydriding are necessary in order to achieve hydrogen uptake and release near ambient temperature. In this study, the solid-state hydriding mechanism of 2LiH + MgB2 mixtures has been investigated. It is found that the solid-state hydriding proceeds in two elementary steps. The first step is the ion exchange between the Mg2+ and Li+ ions in the MgB2 crystal to form an intermediate compound (Mg1−x Li2x )B2. The second step is the continuous ion exchange and simultaneous hydrogenation of (Mg1−x Li2x )B2 to form LiBH4 and MgH2. This finding is consistent with the observed diffusion-controlled hydriding kinetics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/jp1003837</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2010-05, Vol.114 (17), p.8089-8098 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_osti_scitechconnect_979846 |
source | American Chemical Society Journals |
subjects | 08 HYDROGEN 30 DIRECT ENERGY CONVERSION AMBIENT TEMPERATURE C: Energy Conversion and Storage Environmental Molecular Sciences Laboratory FUEL CELLS HYDROGEN HYDROGEN STORAGE HYDROGENATION ION EXCHANGE KINETICS MIXTURES |
title | Solid-State Hydriding Mechanism in the LiBH4 + MgH2 System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-State%20Hydriding%20Mechanism%20in%20the%20LiBH4%20+%20MgH2%20System&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Shaw,%20Leon%20L&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2010-05-06&rft.volume=114&rft.issue=17&rft.spage=8089&rft.epage=8098&rft.pages=8089-8098&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp1003837&rft_dat=%3Cacs_osti_%3Ea605900679%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |