“Fast excitation” cid in a quadrupole ion trap mass spectrometer

Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society for Mass Spectrometry 2003-07, Vol.14 (7), p.785-789
Hauptverfasser: Murrell, J, Despeyroux, D, Lammert, S.A, Stephenson, J.L, Goeringer, D.E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 789
container_issue 7
container_start_page 785
container_title Journal of the American Society for Mass Spectrometry
container_volume 14
creator Murrell, J
Despeyroux, D
Lammert, S.A
Stephenson, J.L
Goeringer, D.E
description Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. “Fast excitation” CID deposits (as determined by the intensity ratio of the a 4/b 4 ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with “fast excitation” CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for “fast excitation” CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H) 17+ of horse heart myoglobin is also shown to illustrate the application of “fast excitation” CID to proteins.
doi_str_mv 10.1016/S1044-0305(03)00326-X
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_978047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S104403050300326X</els_id><sourcerecordid>73422675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-60c45cec632cac9228aae23bc5672941f5e59f1133a189b71586222980f111ad3</originalsourceid><addsrcrecordid>eNqFkc9qFTEUxgdRbK0-ghIRRRejJ_8myUqkWhUKLlToLuRmzmDKzGSaZER3fRB9uT6Jub1XCm7cJOHkdw7f-b6meUjhJQXavfpMQYgWOMjnwF8AcNa1Z7eaQ6qVaSll_HZ9_0UOmns5nwNQBUbdbQ4o01x1QA-bt1eXv05cLgR_-FBcCXG-uvxNfOhJmIkjF6vr07rEEUn9IiW5hUwuZ5IX9CXFCQum-82dwY0ZH-zvo-brybsvxx_a00_vPx6_OW29MKy0HXghPfqOM--8YUw7h4xvvOwUM4IOEqUZKOXcUW02ikrdMcaMhlqkrudHzePd3JhLsLkKRv_Nx3muUqxRGoSqzLMds6R4sWIudgrZ4zi6GeOareKCsU7JCj75BzyPa5qrfkuNZEJKIaBSckf5FHNOONglhcmln5aC3QZhr4OwW5frYa-DsGe179F--rqZsL_p2jtfgad7wGXvxiG52Yd8w0ngSmtdudc7Dqux3wOm7d44e-xD2q7dx_AfKX8AD7Cj7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952455440</pqid></control><display><type>article</type><title>“Fast excitation” cid in a quadrupole ion trap mass spectrometer</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Murrell, J ; Despeyroux, D ; Lammert, S.A ; Stephenson, J.L ; Goeringer, D.E</creator><creatorcontrib>Murrell, J ; Despeyroux, D ; Lammert, S.A ; Stephenson, J.L ; Goeringer, D.E ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. “Fast excitation” CID deposits (as determined by the intensity ratio of the a 4/b 4 ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with “fast excitation” CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for “fast excitation” CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H) 17+ of horse heart myoglobin is also shown to illustrate the application of “fast excitation” CID to proteins.</description><identifier>ISSN: 1044-0305</identifier><identifier>EISSN: 1879-1123</identifier><identifier>DOI: 10.1016/S1044-0305(03)00326-X</identifier><identifier>PMID: 12837601</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>AMPLITUDES ; Analytical chemistry ; Analytical, structural and metabolic biochemistry ; Animals ; ATOMS ; BASIC BIOLOGICAL SCIENCES ; Biological and medical sciences ; Chemistry ; Collision dynamics ; Computer simulation ; COOLING TIME ; DISSOCIATION ; Electric potential ; Enkephalin, Leucine - chemistry ; ENKEPHALINS ; Exact sciences and technology ; EXCITATION ; FRAGMENTATION ; Fundamental and applied biological sciences. Psychology ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; General aspects, investigation methods ; HELIUM ; Helium - chemistry ; Helium atoms ; HORSES ; Internal energy ; Ions ; Ions - chemistry ; KINETIC ENERGY ; Kinetics ; LEUCINE ; MASS SPECTROMETERS ; Mass spectrometry ; Mass Spectrometry - methods ; Myocardium - chemistry ; MYOGLOBIN ; Myoglobin - chemistry ; Myoglobins ; PROTEINS ; QUADRUPOLES ; RESONANCE ; Spectrometric and optical methods</subject><ispartof>Journal of the American Society for Mass Spectrometry, 2003-07, Vol.14 (7), p.785-789</ispartof><rights>2003 American Society for Mass Spectrometry</rights><rights>2003 INIST-CNRS</rights><rights>American Society for Mass Spectrometry 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-60c45cec632cac9228aae23bc5672941f5e59f1133a189b71586222980f111ad3</citedby><cites>FETCH-LOGICAL-c492t-60c45cec632cac9228aae23bc5672941f5e59f1133a189b71586222980f111ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15037888$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12837601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/978047$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Murrell, J</creatorcontrib><creatorcontrib>Despeyroux, D</creatorcontrib><creatorcontrib>Lammert, S.A</creatorcontrib><creatorcontrib>Stephenson, J.L</creatorcontrib><creatorcontrib>Goeringer, D.E</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>“Fast excitation” cid in a quadrupole ion trap mass spectrometer</title><title>Journal of the American Society for Mass Spectrometry</title><addtitle>J Am Soc Mass Spectrom</addtitle><description>Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. “Fast excitation” CID deposits (as determined by the intensity ratio of the a 4/b 4 ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with “fast excitation” CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for “fast excitation” CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H) 17+ of horse heart myoglobin is also shown to illustrate the application of “fast excitation” CID to proteins.</description><subject>AMPLITUDES</subject><subject>Analytical chemistry</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Animals</subject><subject>ATOMS</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological and medical sciences</subject><subject>Chemistry</subject><subject>Collision dynamics</subject><subject>Computer simulation</subject><subject>COOLING TIME</subject><subject>DISSOCIATION</subject><subject>Electric potential</subject><subject>Enkephalin, Leucine - chemistry</subject><subject>ENKEPHALINS</subject><subject>Exact sciences and technology</subject><subject>EXCITATION</subject><subject>FRAGMENTATION</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>General aspects, investigation methods</subject><subject>HELIUM</subject><subject>Helium - chemistry</subject><subject>Helium atoms</subject><subject>HORSES</subject><subject>Internal energy</subject><subject>Ions</subject><subject>Ions - chemistry</subject><subject>KINETIC ENERGY</subject><subject>Kinetics</subject><subject>LEUCINE</subject><subject>MASS SPECTROMETERS</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Myocardium - chemistry</subject><subject>MYOGLOBIN</subject><subject>Myoglobin - chemistry</subject><subject>Myoglobins</subject><subject>PROTEINS</subject><subject>QUADRUPOLES</subject><subject>RESONANCE</subject><subject>Spectrometric and optical methods</subject><issn>1044-0305</issn><issn>1879-1123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc9qFTEUxgdRbK0-ghIRRRejJ_8myUqkWhUKLlToLuRmzmDKzGSaZER3fRB9uT6Jub1XCm7cJOHkdw7f-b6meUjhJQXavfpMQYgWOMjnwF8AcNa1Z7eaQ6qVaSll_HZ9_0UOmns5nwNQBUbdbQ4o01x1QA-bt1eXv05cLgR_-FBcCXG-uvxNfOhJmIkjF6vr07rEEUn9IiW5hUwuZ5IX9CXFCQum-82dwY0ZH-zvo-brybsvxx_a00_vPx6_OW29MKy0HXghPfqOM--8YUw7h4xvvOwUM4IOEqUZKOXcUW02ikrdMcaMhlqkrudHzePd3JhLsLkKRv_Nx3muUqxRGoSqzLMds6R4sWIudgrZ4zi6GeOareKCsU7JCj75BzyPa5qrfkuNZEJKIaBSckf5FHNOONglhcmln5aC3QZhr4OwW5frYa-DsGe179F--rqZsL_p2jtfgad7wGXvxiG52Yd8w0ngSmtdudc7Dqux3wOm7d44e-xD2q7dx_AfKX8AD7Cj7g</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Murrell, J</creator><creator>Despeyroux, D</creator><creator>Lammert, S.A</creator><creator>Stephenson, J.L</creator><creator>Goeringer, D.E</creator><general>Elsevier Inc</general><general>Elsevier Science</general><general>Springer Nature B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20030701</creationdate><title>“Fast excitation” cid in a quadrupole ion trap mass spectrometer</title><author>Murrell, J ; Despeyroux, D ; Lammert, S.A ; Stephenson, J.L ; Goeringer, D.E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-60c45cec632cac9228aae23bc5672941f5e59f1133a189b71586222980f111ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>AMPLITUDES</topic><topic>Analytical chemistry</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Animals</topic><topic>ATOMS</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological and medical sciences</topic><topic>Chemistry</topic><topic>Collision dynamics</topic><topic>Computer simulation</topic><topic>COOLING TIME</topic><topic>DISSOCIATION</topic><topic>Electric potential</topic><topic>Enkephalin, Leucine - chemistry</topic><topic>ENKEPHALINS</topic><topic>Exact sciences and technology</topic><topic>EXCITATION</topic><topic>FRAGMENTATION</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>General aspects, investigation methods</topic><topic>HELIUM</topic><topic>Helium - chemistry</topic><topic>Helium atoms</topic><topic>HORSES</topic><topic>Internal energy</topic><topic>Ions</topic><topic>Ions - chemistry</topic><topic>KINETIC ENERGY</topic><topic>Kinetics</topic><topic>LEUCINE</topic><topic>MASS SPECTROMETERS</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Myocardium - chemistry</topic><topic>MYOGLOBIN</topic><topic>Myoglobin - chemistry</topic><topic>Myoglobins</topic><topic>PROTEINS</topic><topic>QUADRUPOLES</topic><topic>RESONANCE</topic><topic>Spectrometric and optical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murrell, J</creatorcontrib><creatorcontrib>Despeyroux, D</creatorcontrib><creatorcontrib>Lammert, S.A</creatorcontrib><creatorcontrib>Stephenson, J.L</creatorcontrib><creatorcontrib>Goeringer, D.E</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Society for Mass Spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murrell, J</au><au>Despeyroux, D</au><au>Lammert, S.A</au><au>Stephenson, J.L</au><au>Goeringer, D.E</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>“Fast excitation” cid in a quadrupole ion trap mass spectrometer</atitle><jtitle>Journal of the American Society for Mass Spectrometry</jtitle><addtitle>J Am Soc Mass Spectrom</addtitle><date>2003-07-01</date><risdate>2003</risdate><volume>14</volume><issue>7</issue><spage>785</spage><epage>789</epage><pages>785-789</pages><issn>1044-0305</issn><eissn>1879-1123</eissn><abstract>Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. “Fast excitation” CID deposits (as determined by the intensity ratio of the a 4/b 4 ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with “fast excitation” CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for “fast excitation” CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H) 17+ of horse heart myoglobin is also shown to illustrate the application of “fast excitation” CID to proteins.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>12837601</pmid><doi>10.1016/S1044-0305(03)00326-X</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1044-0305
ispartof Journal of the American Society for Mass Spectrometry, 2003-07, Vol.14 (7), p.785-789
issn 1044-0305
1879-1123
language eng
recordid cdi_osti_scitechconnect_978047
source MEDLINE; SpringerNature Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects AMPLITUDES
Analytical chemistry
Analytical, structural and metabolic biochemistry
Animals
ATOMS
BASIC BIOLOGICAL SCIENCES
Biological and medical sciences
Chemistry
Collision dynamics
Computer simulation
COOLING TIME
DISSOCIATION
Electric potential
Enkephalin, Leucine - chemistry
ENKEPHALINS
Exact sciences and technology
EXCITATION
FRAGMENTATION
Fundamental and applied biological sciences. Psychology
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
General aspects, investigation methods
HELIUM
Helium - chemistry
Helium atoms
HORSES
Internal energy
Ions
Ions - chemistry
KINETIC ENERGY
Kinetics
LEUCINE
MASS SPECTROMETERS
Mass spectrometry
Mass Spectrometry - methods
Myocardium - chemistry
MYOGLOBIN
Myoglobin - chemistry
Myoglobins
PROTEINS
QUADRUPOLES
RESONANCE
Spectrometric and optical methods
title “Fast excitation” cid in a quadrupole ion trap mass spectrometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%9CFast%20excitation%E2%80%9D%20cid%20in%20a%20quadrupole%20ion%20trap%20mass%20spectrometer&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Mass%20Spectrometry&rft.au=Murrell,%20J&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2003-07-01&rft.volume=14&rft.issue=7&rft.spage=785&rft.epage=789&rft.pages=785-789&rft.issn=1044-0305&rft.eissn=1879-1123&rft_id=info:doi/10.1016/S1044-0305(03)00326-X&rft_dat=%3Cproquest_osti_%3E73422675%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952455440&rft_id=info:pmid/12837601&rft_els_id=S104403050300326X&rfr_iscdi=true