Imaging and manipulation of the competing electronic phases near the Mott metal-insulator transition

The complex interplay between the electron and lattice degrees of freedom produces multiple nearly degenerate electronic states in correlated electron materials. The competition between these degenerate electronic states largely determines the functionalities of the system, but the invoked mechanism...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-03, Vol.107 (12), p.5272-5275
Hauptverfasser: Kim, Tae-Hwan, Angst, M, Hu, B, Jin, R, Zhang, X.-G, Wendelken, J.F, Plummer, E.W, Li, An-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5275
container_issue 12
container_start_page 5272
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Kim, Tae-Hwan
Angst, M
Hu, B
Jin, R
Zhang, X.-G
Wendelken, J.F
Plummer, E.W
Li, An-Ping
description The complex interplay between the electron and lattice degrees of freedom produces multiple nearly degenerate electronic states in correlated electron materials. The competition between these degenerate electronic states largely determines the functionalities of the system, but the invoked mechanism remains in debate. By imaging phase domains with electron microscopy and interrogating individual domains in situ via electron transport spectroscopy in double-layered Sr₃(Ru₁₋xMnx)₂O₇ (x = 0 and 0.2), we show in real-space that the microscopic phase competition and the Mott-type metal-insulator transition are extremely sensitive to applied mechanical stress. The revealed dynamic phase evolution with applied stress provides the first direct evidence for the important role of strain effect in both phase separation and Mott metal-insulator transition due to strong electron-lattice coupling in correlated systems.
doi_str_mv 10.1073/pnas.1000655107
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_974211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25664970</jstor_id><sourcerecordid>25664970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c581t-e087544bb7a11b8ecc34c5177c4baebd552e01f6b7616de55bf8726d58884b153</originalsourceid><addsrcrecordid>eNpdksGP1CAUxonRuLOrZ09q9eKpLo-WQi8mZrPqJms86J4Jpa8zTFqoQE3876XOuKOeILzf-_geH4Q8A_oWqKguZ6dj3lHacJ4PHpAN0BbKpm7pQ7KhlIlS1qw-I-cx7jPWckkfkzNGGaUVsA3pbya9tW5baNcXk3Z2XkadrHeFH4q0w8L4aca0EjiiScE7a4p5pyPGwqEOv6HPPqViwqTH0rq4KvhcCNpFu2o9IY8GPUZ8elwvyN2H629Xn8rbLx9vrt7floZLSCVSKXhdd53QAJ1EY6racBDC1J3GruecIYWh6UQDTY-cd4MUrOm5lLLugFcX5N1Bd166CXuDLnsY1RzspMNP5bVV_1ac3amt_6GY5CCZzAKvDgI-JquisQnNznjn8uSqFTUDyMyb4yXBf18wJjXZaHActUO_RCWqStIG2pV8_R-590tw-QUUo1Cxildthi4PkAk-xoDDvV2gas1YrRmrU8a548XfU97zf0LNwMsjsHae5IQCpjgTK_H8QOxjTuqkwJv8cwQ9KQzaK70NNqq7r6tnChLaNpv4BdaswNc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201323539</pqid></control><display><type>article</type><title>Imaging and manipulation of the competing electronic phases near the Mott metal-insulator transition</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Tae-Hwan ; Angst, M ; Hu, B ; Jin, R ; Zhang, X.-G ; Wendelken, J.F ; Plummer, E.W ; Li, An-Ping</creator><creatorcontrib>Kim, Tae-Hwan ; Angst, M ; Hu, B ; Jin, R ; Zhang, X.-G ; Wendelken, J.F ; Plummer, E.W ; Li, An-Ping ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Center for Nanophase Materials Sciences</creatorcontrib><description>The complex interplay between the electron and lattice degrees of freedom produces multiple nearly degenerate electronic states in correlated electron materials. The competition between these degenerate electronic states largely determines the functionalities of the system, but the invoked mechanism remains in debate. By imaging phase domains with electron microscopy and interrogating individual domains in situ via electron transport spectroscopy in double-layered Sr₃(Ru₁₋xMnx)₂O₇ (x = 0 and 0.2), we show in real-space that the microscopic phase competition and the Mott-type metal-insulator transition are extremely sensitive to applied mechanical stress. The revealed dynamic phase evolution with applied stress provides the first direct evidence for the important role of strain effect in both phase separation and Mott metal-insulator transition due to strong electron-lattice coupling in correlated systems.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1000655107</identifier><identifier>PMID: 20200312</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Crystal lattices ; Crystals ; Electric fields ; Electrical phases ; Electron microscopes ; Electrons ; Energy gaps ; Imaging ; Insulation ; MAGNETORESISTANCE ; MANGANESE OXIDES ; Materials ; MATERIALS SCIENCE ; Metals ; Microscopy ; PHASE STUDIES ; PHASE TRANSFORMATIONS ; Physical Sciences ; RUTHENIUM OXIDES ; STRAINS ; Stripes ; STRONTIUM OXIDES ; SUPERCONDUCTIVITY ; Transition temperature</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (12), p.5272-5275</ispartof><rights>Copyright National Academy of Sciences Mar 23, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c581t-e087544bb7a11b8ecc34c5177c4baebd552e01f6b7616de55bf8726d58884b153</citedby><cites>FETCH-LOGICAL-c581t-e087544bb7a11b8ecc34c5177c4baebd552e01f6b7616de55bf8726d58884b153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/12.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25664970$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25664970$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20200312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/974211$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Tae-Hwan</creatorcontrib><creatorcontrib>Angst, M</creatorcontrib><creatorcontrib>Hu, B</creatorcontrib><creatorcontrib>Jin, R</creatorcontrib><creatorcontrib>Zhang, X.-G</creatorcontrib><creatorcontrib>Wendelken, J.F</creatorcontrib><creatorcontrib>Plummer, E.W</creatorcontrib><creatorcontrib>Li, An-Ping</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences</creatorcontrib><title>Imaging and manipulation of the competing electronic phases near the Mott metal-insulator transition</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The complex interplay between the electron and lattice degrees of freedom produces multiple nearly degenerate electronic states in correlated electron materials. The competition between these degenerate electronic states largely determines the functionalities of the system, but the invoked mechanism remains in debate. By imaging phase domains with electron microscopy and interrogating individual domains in situ via electron transport spectroscopy in double-layered Sr₃(Ru₁₋xMnx)₂O₇ (x = 0 and 0.2), we show in real-space that the microscopic phase competition and the Mott-type metal-insulator transition are extremely sensitive to applied mechanical stress. The revealed dynamic phase evolution with applied stress provides the first direct evidence for the important role of strain effect in both phase separation and Mott metal-insulator transition due to strong electron-lattice coupling in correlated systems.</description><subject>Crystal lattices</subject><subject>Crystals</subject><subject>Electric fields</subject><subject>Electrical phases</subject><subject>Electron microscopes</subject><subject>Electrons</subject><subject>Energy gaps</subject><subject>Imaging</subject><subject>Insulation</subject><subject>MAGNETORESISTANCE</subject><subject>MANGANESE OXIDES</subject><subject>Materials</subject><subject>MATERIALS SCIENCE</subject><subject>Metals</subject><subject>Microscopy</subject><subject>PHASE STUDIES</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Physical Sciences</subject><subject>RUTHENIUM OXIDES</subject><subject>STRAINS</subject><subject>Stripes</subject><subject>STRONTIUM OXIDES</subject><subject>SUPERCONDUCTIVITY</subject><subject>Transition temperature</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdksGP1CAUxonRuLOrZ09q9eKpLo-WQi8mZrPqJms86J4Jpa8zTFqoQE3876XOuKOeILzf-_geH4Q8A_oWqKguZ6dj3lHacJ4PHpAN0BbKpm7pQ7KhlIlS1qw-I-cx7jPWckkfkzNGGaUVsA3pbya9tW5baNcXk3Z2XkadrHeFH4q0w8L4aca0EjiiScE7a4p5pyPGwqEOv6HPPqViwqTH0rq4KvhcCNpFu2o9IY8GPUZ8elwvyN2H629Xn8rbLx9vrt7floZLSCVSKXhdd53QAJ1EY6racBDC1J3GruecIYWh6UQDTY-cd4MUrOm5lLLugFcX5N1Bd166CXuDLnsY1RzspMNP5bVV_1ac3amt_6GY5CCZzAKvDgI-JquisQnNznjn8uSqFTUDyMyb4yXBf18wJjXZaHActUO_RCWqStIG2pV8_R-590tw-QUUo1Cxildthi4PkAk-xoDDvV2gas1YrRmrU8a548XfU97zf0LNwMsjsHae5IQCpjgTK_H8QOxjTuqkwJv8cwQ9KQzaK70NNqq7r6tnChLaNpv4BdaswNc</recordid><startdate>20100323</startdate><enddate>20100323</enddate><creator>Kim, Tae-Hwan</creator><creator>Angst, M</creator><creator>Hu, B</creator><creator>Jin, R</creator><creator>Zhang, X.-G</creator><creator>Wendelken, J.F</creator><creator>Plummer, E.W</creator><creator>Li, An-Ping</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20100323</creationdate><title>Imaging and manipulation of the competing electronic phases near the Mott metal-insulator transition</title><author>Kim, Tae-Hwan ; Angst, M ; Hu, B ; Jin, R ; Zhang, X.-G ; Wendelken, J.F ; Plummer, E.W ; Li, An-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c581t-e087544bb7a11b8ecc34c5177c4baebd552e01f6b7616de55bf8726d58884b153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Crystal lattices</topic><topic>Crystals</topic><topic>Electric fields</topic><topic>Electrical phases</topic><topic>Electron microscopes</topic><topic>Electrons</topic><topic>Energy gaps</topic><topic>Imaging</topic><topic>Insulation</topic><topic>MAGNETORESISTANCE</topic><topic>MANGANESE OXIDES</topic><topic>Materials</topic><topic>MATERIALS SCIENCE</topic><topic>Metals</topic><topic>Microscopy</topic><topic>PHASE STUDIES</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Physical Sciences</topic><topic>RUTHENIUM OXIDES</topic><topic>STRAINS</topic><topic>Stripes</topic><topic>STRONTIUM OXIDES</topic><topic>SUPERCONDUCTIVITY</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Tae-Hwan</creatorcontrib><creatorcontrib>Angst, M</creatorcontrib><creatorcontrib>Hu, B</creatorcontrib><creatorcontrib>Jin, R</creatorcontrib><creatorcontrib>Zhang, X.-G</creatorcontrib><creatorcontrib>Wendelken, J.F</creatorcontrib><creatorcontrib>Plummer, E.W</creatorcontrib><creatorcontrib>Li, An-Ping</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Tae-Hwan</au><au>Angst, M</au><au>Hu, B</au><au>Jin, R</au><au>Zhang, X.-G</au><au>Wendelken, J.F</au><au>Plummer, E.W</au><au>Li, An-Ping</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Center for Nanophase Materials Sciences</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging and manipulation of the competing electronic phases near the Mott metal-insulator transition</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-03-23</date><risdate>2010</risdate><volume>107</volume><issue>12</issue><spage>5272</spage><epage>5275</epage><pages>5272-5275</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The complex interplay between the electron and lattice degrees of freedom produces multiple nearly degenerate electronic states in correlated electron materials. The competition between these degenerate electronic states largely determines the functionalities of the system, but the invoked mechanism remains in debate. By imaging phase domains with electron microscopy and interrogating individual domains in situ via electron transport spectroscopy in double-layered Sr₃(Ru₁₋xMnx)₂O₇ (x = 0 and 0.2), we show in real-space that the microscopic phase competition and the Mott-type metal-insulator transition are extremely sensitive to applied mechanical stress. The revealed dynamic phase evolution with applied stress provides the first direct evidence for the important role of strain effect in both phase separation and Mott metal-insulator transition due to strong electron-lattice coupling in correlated systems.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20200312</pmid><doi>10.1073/pnas.1000655107</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (12), p.5272-5275
issn 0027-8424
1091-6490
language eng
recordid cdi_osti_scitechconnect_974211
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Crystal lattices
Crystals
Electric fields
Electrical phases
Electron microscopes
Electrons
Energy gaps
Imaging
Insulation
MAGNETORESISTANCE
MANGANESE OXIDES
Materials
MATERIALS SCIENCE
Metals
Microscopy
PHASE STUDIES
PHASE TRANSFORMATIONS
Physical Sciences
RUTHENIUM OXIDES
STRAINS
Stripes
STRONTIUM OXIDES
SUPERCONDUCTIVITY
Transition temperature
title Imaging and manipulation of the competing electronic phases near the Mott metal-insulator transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20and%20manipulation%20of%20the%20competing%20electronic%20phases%20near%20the%20Mott%20metal-insulator%20transition&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kim,%20Tae-Hwan&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2010-03-23&rft.volume=107&rft.issue=12&rft.spage=5272&rft.epage=5275&rft.pages=5272-5275&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1000655107&rft_dat=%3Cjstor_osti_%3E25664970%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201323539&rft_id=info:pmid/20200312&rft_jstor_id=25664970&rfr_iscdi=true