ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization
ROOT is an object-oriented C++ framework conceived in the high-energy physics (HEP) community, designed for storing and analyzing petabytes of data in an efficient way. Any instance of a C++ class can be stored into a ROOT file in a machine-independent compressed binary format. In ROOT the TTree obj...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2009-12, Vol.180 (12), p.2499-2512 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2512 |
---|---|
container_issue | 12 |
container_start_page | 2499 |
container_title | Computer physics communications |
container_volume | 180 |
creator | Antcheva, I. Ballintijn, M. Bellenot, B. Biskup, M. Brun, R. Buncic, N. Canal, Ph Casadei, D. Couet, O. Fine, V. Franco, L. Ganis, G. Gheata, A. Maline, D. Gonzalez Goto, M. Iwaszkiewicz, J. Kreshuk, A. Segura, D. Marcos Maunder, R. Moneta, L. Naumann, A. Offermann, E. Onuchin, V. Panacek, S. Rademakers, F. Russo, P. Tadel, M. |
description | ROOT is an object-oriented C++ framework conceived in the high-energy physics (HEP) community, designed for storing and analyzing petabytes of data in an efficient way. Any instance of a C++ class can be stored into a ROOT file in a machine-independent compressed binary format. In ROOT the TTree object container is optimized for statistical data analysis over very large data sets by using vertical data storage techniques. These containers can span a large number of files on local disks, the web, or a number of different shared file systems. In order to analyze this data, the user can chose out of a wide set of mathematical and statistical functions, including linear algebra classes, numerical algorithms such as integration and minimization, and various methods for performing regression analysis (fitting). In particular, the RooFit package allows the user to perform complex data modeling and fitting while the RooStats library provides abstractions and implementations for advanced statistical tools. Multivariate classification methods based on machine learning techniques are available via the TMVA package. A central piece in these analysis tools are the histogram classes which provide binning of one- and multi-dimensional data. Results can be saved in high-quality graphical formats like Postscript and PDF or in bitmap formats like JPG or GIF. The result can also be stored into ROOT macros that allow a full recreation and rework of the graphics. Users typically create their analysis macros step by step, making use of the interactive C++ interpreter CINT, while running over small data samples. Once the development is finished, they can run these macros at full compiled speed over large data sets, using on-the-fly compilation, or by creating a stand-alone batch program. Finally, if processing farms are available, the user can reduce the execution time of intrinsically parallel tasks — e.g. data mining in HEP — by using PROOF, which will take care of optimally distributing the work over the available resources in a transparent way.
Program title: ROOT
Catalogue identifier: AEFA_v1_0
Program summary URL:
http://cpc.cs.qub.ac.uk/summaries/AEFA_v1_0.html
Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland
Licensing provisions: LGPL
No. of lines in distributed program, including test data, etc.: 3 044 581
No. of bytes in distributed program, including test data, etc.: 36 325 133
Distribution format: tar.gz
Programming language: C++ |
doi_str_mv | 10.1016/j.cpc.2009.08.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_971694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465509002550</els_id><sourcerecordid>35038494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-9380630ff72df21444f62dbee55bf601ddc54fef704c422019ae84f9781907d33</originalsourceid><addsrcrecordid>eNp9kM1uUzEQha2KSg1tH4Cdu2FT7mV87ftjsaoiKEiVIlVlw8Zy7HHr9OY62E5RuuIh-oR9EhzCmtUcab4zOnMIecegZsC6j6vabEzdAMgahhqgPSIzNvSyaqQQb8gMgEElurY9IW9TWgFA30s-Iz9uF4s7-vr7hV7R-eUldVGv8VeIj9SFSDeY9XKXkVqdNU05RH2PH4rQ2afsjR6pnvS4Sz4VYemTT1s9-ueyDtMZOXZ6THj-b56S718-382_VjeL62_zq5vKCM5zJfkAHQfn-sa6hgkhXNfYJWLbLl0HzFrTCoeuB2FE0wCTGgfhZD8wCb3l_JRcHO6GEkkl4zOaBxOmCU1WsmedFIV5f2A2MfzcYspq7ZPBcdQThm1SvAU-iL8gO4AmhpQiOrWJfq3jTjFQ-6bVSpWm1b5pBYMqTRfPp4MHy5dPHuM-BE4GrY_7DDb4_7j_AACShkQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35038494</pqid></control><display><type>article</type><title>ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization</title><source>Elsevier ScienceDirect Journals</source><creator>Antcheva, I. ; Ballintijn, M. ; Bellenot, B. ; Biskup, M. ; Brun, R. ; Buncic, N. ; Canal, Ph ; Casadei, D. ; Couet, O. ; Fine, V. ; Franco, L. ; Ganis, G. ; Gheata, A. ; Maline, D. Gonzalez ; Goto, M. ; Iwaszkiewicz, J. ; Kreshuk, A. ; Segura, D. Marcos ; Maunder, R. ; Moneta, L. ; Naumann, A. ; Offermann, E. ; Onuchin, V. ; Panacek, S. ; Rademakers, F. ; Russo, P. ; Tadel, M.</creator><creatorcontrib>Antcheva, I. ; Ballintijn, M. ; Bellenot, B. ; Biskup, M. ; Brun, R. ; Buncic, N. ; Canal, Ph ; Casadei, D. ; Couet, O. ; Fine, V. ; Franco, L. ; Ganis, G. ; Gheata, A. ; Maline, D. Gonzalez ; Goto, M. ; Iwaszkiewicz, J. ; Kreshuk, A. ; Segura, D. Marcos ; Maunder, R. ; Moneta, L. ; Naumann, A. ; Offermann, E. ; Onuchin, V. ; Panacek, S. ; Rademakers, F. ; Russo, P. ; Tadel, M. ; Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><description>ROOT is an object-oriented C++ framework conceived in the high-energy physics (HEP) community, designed for storing and analyzing petabytes of data in an efficient way. Any instance of a C++ class can be stored into a ROOT file in a machine-independent compressed binary format. In ROOT the TTree object container is optimized for statistical data analysis over very large data sets by using vertical data storage techniques. These containers can span a large number of files on local disks, the web, or a number of different shared file systems. In order to analyze this data, the user can chose out of a wide set of mathematical and statistical functions, including linear algebra classes, numerical algorithms such as integration and minimization, and various methods for performing regression analysis (fitting). In particular, the RooFit package allows the user to perform complex data modeling and fitting while the RooStats library provides abstractions and implementations for advanced statistical tools. Multivariate classification methods based on machine learning techniques are available via the TMVA package. A central piece in these analysis tools are the histogram classes which provide binning of one- and multi-dimensional data. Results can be saved in high-quality graphical formats like Postscript and PDF or in bitmap formats like JPG or GIF. The result can also be stored into ROOT macros that allow a full recreation and rework of the graphics. Users typically create their analysis macros step by step, making use of the interactive C++ interpreter CINT, while running over small data samples. Once the development is finished, they can run these macros at full compiled speed over large data sets, using on-the-fly compilation, or by creating a stand-alone batch program. Finally, if processing farms are available, the user can reduce the execution time of intrinsically parallel tasks — e.g. data mining in HEP — by using PROOF, which will take care of optimally distributing the work over the available resources in a transparent way.
Program title: ROOT
Catalogue identifier: AEFA_v1_0
Program summary URL:
http://cpc.cs.qub.ac.uk/summaries/AEFA_v1_0.html
Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland
Licensing provisions: LGPL
No. of lines in distributed program, including test data, etc.: 3 044 581
No. of bytes in distributed program, including test data, etc.: 36 325 133
Distribution format: tar.gz
Programming language: C++
Computer: Intel i386, Intel x86-64, Motorola PPC, Sun Sparc, HP PA-RISC
Operating system: GNU/Linux, Windows XP/Vista, Mac OS X, FreeBSD, OpenBSD, Solaris, HP-UX, AIX
Has the code been vectorized or parallelized?: Yes
RAM:
>
55
Mbytes
Classification: 4, 9, 11.9, 14
Nature of problem: Storage, analysis and visualization of scientific data
Solution method: Object store, wide range of analysis algorithms and visualization methods
Additional comments: For an up-to-date author list see:
http://root.cern.ch/drupal/content/root-development-team and
http://root.cern.ch/drupal/content/former-root-developers
Running time: Depending on the data size and complexity of analysis algorithms
References:
[1]
http://root.cern.ch.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2009.08.005</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>ALGEBRA ; ALGORITHMS ; C++ ; CLASSIFICATION ; Computing ; CONTAINERS ; Data analysis ; Data storage ; FARMS ; Framework ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Interpreter ; LEARNING ; MINIMIZATION ; MINING ; Object-oriented ; PHYSICS ; PROCESSING ; REGRESSION ANALYSIS ; SIMULATION ; STORAGE ; VELOCITY ; Visualization</subject><ispartof>Computer physics communications, 2009-12, Vol.180 (12), p.2499-2512</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-9380630ff72df21444f62dbee55bf601ddc54fef704c422019ae84f9781907d33</citedby><cites>FETCH-LOGICAL-c433t-9380630ff72df21444f62dbee55bf601ddc54fef704c422019ae84f9781907d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010465509002550$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/971694$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Antcheva, I.</creatorcontrib><creatorcontrib>Ballintijn, M.</creatorcontrib><creatorcontrib>Bellenot, B.</creatorcontrib><creatorcontrib>Biskup, M.</creatorcontrib><creatorcontrib>Brun, R.</creatorcontrib><creatorcontrib>Buncic, N.</creatorcontrib><creatorcontrib>Canal, Ph</creatorcontrib><creatorcontrib>Casadei, D.</creatorcontrib><creatorcontrib>Couet, O.</creatorcontrib><creatorcontrib>Fine, V.</creatorcontrib><creatorcontrib>Franco, L.</creatorcontrib><creatorcontrib>Ganis, G.</creatorcontrib><creatorcontrib>Gheata, A.</creatorcontrib><creatorcontrib>Maline, D. Gonzalez</creatorcontrib><creatorcontrib>Goto, M.</creatorcontrib><creatorcontrib>Iwaszkiewicz, J.</creatorcontrib><creatorcontrib>Kreshuk, A.</creatorcontrib><creatorcontrib>Segura, D. Marcos</creatorcontrib><creatorcontrib>Maunder, R.</creatorcontrib><creatorcontrib>Moneta, L.</creatorcontrib><creatorcontrib>Naumann, A.</creatorcontrib><creatorcontrib>Offermann, E.</creatorcontrib><creatorcontrib>Onuchin, V.</creatorcontrib><creatorcontrib>Panacek, S.</creatorcontrib><creatorcontrib>Rademakers, F.</creatorcontrib><creatorcontrib>Russo, P.</creatorcontrib><creatorcontrib>Tadel, M.</creatorcontrib><creatorcontrib>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><title>ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization</title><title>Computer physics communications</title><description>ROOT is an object-oriented C++ framework conceived in the high-energy physics (HEP) community, designed for storing and analyzing petabytes of data in an efficient way. Any instance of a C++ class can be stored into a ROOT file in a machine-independent compressed binary format. In ROOT the TTree object container is optimized for statistical data analysis over very large data sets by using vertical data storage techniques. These containers can span a large number of files on local disks, the web, or a number of different shared file systems. In order to analyze this data, the user can chose out of a wide set of mathematical and statistical functions, including linear algebra classes, numerical algorithms such as integration and minimization, and various methods for performing regression analysis (fitting). In particular, the RooFit package allows the user to perform complex data modeling and fitting while the RooStats library provides abstractions and implementations for advanced statistical tools. Multivariate classification methods based on machine learning techniques are available via the TMVA package. A central piece in these analysis tools are the histogram classes which provide binning of one- and multi-dimensional data. Results can be saved in high-quality graphical formats like Postscript and PDF or in bitmap formats like JPG or GIF. The result can also be stored into ROOT macros that allow a full recreation and rework of the graphics. Users typically create their analysis macros step by step, making use of the interactive C++ interpreter CINT, while running over small data samples. Once the development is finished, they can run these macros at full compiled speed over large data sets, using on-the-fly compilation, or by creating a stand-alone batch program. Finally, if processing farms are available, the user can reduce the execution time of intrinsically parallel tasks — e.g. data mining in HEP — by using PROOF, which will take care of optimally distributing the work over the available resources in a transparent way.
Program title: ROOT
Catalogue identifier: AEFA_v1_0
Program summary URL:
http://cpc.cs.qub.ac.uk/summaries/AEFA_v1_0.html
Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland
Licensing provisions: LGPL
No. of lines in distributed program, including test data, etc.: 3 044 581
No. of bytes in distributed program, including test data, etc.: 36 325 133
Distribution format: tar.gz
Programming language: C++
Computer: Intel i386, Intel x86-64, Motorola PPC, Sun Sparc, HP PA-RISC
Operating system: GNU/Linux, Windows XP/Vista, Mac OS X, FreeBSD, OpenBSD, Solaris, HP-UX, AIX
Has the code been vectorized or parallelized?: Yes
RAM:
>
55
Mbytes
Classification: 4, 9, 11.9, 14
Nature of problem: Storage, analysis and visualization of scientific data
Solution method: Object store, wide range of analysis algorithms and visualization methods
Additional comments: For an up-to-date author list see:
http://root.cern.ch/drupal/content/root-development-team and
http://root.cern.ch/drupal/content/former-root-developers
Running time: Depending on the data size and complexity of analysis algorithms
References:
[1]
http://root.cern.ch.</description><subject>ALGEBRA</subject><subject>ALGORITHMS</subject><subject>C++</subject><subject>CLASSIFICATION</subject><subject>Computing</subject><subject>CONTAINERS</subject><subject>Data analysis</subject><subject>Data storage</subject><subject>FARMS</subject><subject>Framework</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Interpreter</subject><subject>LEARNING</subject><subject>MINIMIZATION</subject><subject>MINING</subject><subject>Object-oriented</subject><subject>PHYSICS</subject><subject>PROCESSING</subject><subject>REGRESSION ANALYSIS</subject><subject>SIMULATION</subject><subject>STORAGE</subject><subject>VELOCITY</subject><subject>Visualization</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kM1uUzEQha2KSg1tH4Cdu2FT7mV87ftjsaoiKEiVIlVlw8Zy7HHr9OY62E5RuuIh-oR9EhzCmtUcab4zOnMIecegZsC6j6vabEzdAMgahhqgPSIzNvSyaqQQb8gMgEElurY9IW9TWgFA30s-Iz9uF4s7-vr7hV7R-eUldVGv8VeIj9SFSDeY9XKXkVqdNU05RH2PH4rQ2afsjR6pnvS4Sz4VYemTT1s9-ueyDtMZOXZ6THj-b56S718-382_VjeL62_zq5vKCM5zJfkAHQfn-sa6hgkhXNfYJWLbLl0HzFrTCoeuB2FE0wCTGgfhZD8wCb3l_JRcHO6GEkkl4zOaBxOmCU1WsmedFIV5f2A2MfzcYspq7ZPBcdQThm1SvAU-iL8gO4AmhpQiOrWJfq3jTjFQ-6bVSpWm1b5pBYMqTRfPp4MHy5dPHuM-BE4GrY_7DDb4_7j_AACShkQ</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Antcheva, I.</creator><creator>Ballintijn, M.</creator><creator>Bellenot, B.</creator><creator>Biskup, M.</creator><creator>Brun, R.</creator><creator>Buncic, N.</creator><creator>Canal, Ph</creator><creator>Casadei, D.</creator><creator>Couet, O.</creator><creator>Fine, V.</creator><creator>Franco, L.</creator><creator>Ganis, G.</creator><creator>Gheata, A.</creator><creator>Maline, D. Gonzalez</creator><creator>Goto, M.</creator><creator>Iwaszkiewicz, J.</creator><creator>Kreshuk, A.</creator><creator>Segura, D. Marcos</creator><creator>Maunder, R.</creator><creator>Moneta, L.</creator><creator>Naumann, A.</creator><creator>Offermann, E.</creator><creator>Onuchin, V.</creator><creator>Panacek, S.</creator><creator>Rademakers, F.</creator><creator>Russo, P.</creator><creator>Tadel, M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20091201</creationdate><title>ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization</title><author>Antcheva, I. ; Ballintijn, M. ; Bellenot, B. ; Biskup, M. ; Brun, R. ; Buncic, N. ; Canal, Ph ; Casadei, D. ; Couet, O. ; Fine, V. ; Franco, L. ; Ganis, G. ; Gheata, A. ; Maline, D. Gonzalez ; Goto, M. ; Iwaszkiewicz, J. ; Kreshuk, A. ; Segura, D. Marcos ; Maunder, R. ; Moneta, L. ; Naumann, A. ; Offermann, E. ; Onuchin, V. ; Panacek, S. ; Rademakers, F. ; Russo, P. ; Tadel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-9380630ff72df21444f62dbee55bf601ddc54fef704c422019ae84f9781907d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ALGEBRA</topic><topic>ALGORITHMS</topic><topic>C++</topic><topic>CLASSIFICATION</topic><topic>Computing</topic><topic>CONTAINERS</topic><topic>Data analysis</topic><topic>Data storage</topic><topic>FARMS</topic><topic>Framework</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Interpreter</topic><topic>LEARNING</topic><topic>MINIMIZATION</topic><topic>MINING</topic><topic>Object-oriented</topic><topic>PHYSICS</topic><topic>PROCESSING</topic><topic>REGRESSION ANALYSIS</topic><topic>SIMULATION</topic><topic>STORAGE</topic><topic>VELOCITY</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antcheva, I.</creatorcontrib><creatorcontrib>Ballintijn, M.</creatorcontrib><creatorcontrib>Bellenot, B.</creatorcontrib><creatorcontrib>Biskup, M.</creatorcontrib><creatorcontrib>Brun, R.</creatorcontrib><creatorcontrib>Buncic, N.</creatorcontrib><creatorcontrib>Canal, Ph</creatorcontrib><creatorcontrib>Casadei, D.</creatorcontrib><creatorcontrib>Couet, O.</creatorcontrib><creatorcontrib>Fine, V.</creatorcontrib><creatorcontrib>Franco, L.</creatorcontrib><creatorcontrib>Ganis, G.</creatorcontrib><creatorcontrib>Gheata, A.</creatorcontrib><creatorcontrib>Maline, D. Gonzalez</creatorcontrib><creatorcontrib>Goto, M.</creatorcontrib><creatorcontrib>Iwaszkiewicz, J.</creatorcontrib><creatorcontrib>Kreshuk, A.</creatorcontrib><creatorcontrib>Segura, D. Marcos</creatorcontrib><creatorcontrib>Maunder, R.</creatorcontrib><creatorcontrib>Moneta, L.</creatorcontrib><creatorcontrib>Naumann, A.</creatorcontrib><creatorcontrib>Offermann, E.</creatorcontrib><creatorcontrib>Onuchin, V.</creatorcontrib><creatorcontrib>Panacek, S.</creatorcontrib><creatorcontrib>Rademakers, F.</creatorcontrib><creatorcontrib>Russo, P.</creatorcontrib><creatorcontrib>Tadel, M.</creatorcontrib><creatorcontrib>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antcheva, I.</au><au>Ballintijn, M.</au><au>Bellenot, B.</au><au>Biskup, M.</au><au>Brun, R.</au><au>Buncic, N.</au><au>Canal, Ph</au><au>Casadei, D.</au><au>Couet, O.</au><au>Fine, V.</au><au>Franco, L.</au><au>Ganis, G.</au><au>Gheata, A.</au><au>Maline, D. Gonzalez</au><au>Goto, M.</au><au>Iwaszkiewicz, J.</au><au>Kreshuk, A.</au><au>Segura, D. Marcos</au><au>Maunder, R.</au><au>Moneta, L.</au><au>Naumann, A.</au><au>Offermann, E.</au><au>Onuchin, V.</au><au>Panacek, S.</au><au>Rademakers, F.</au><au>Russo, P.</au><au>Tadel, M.</au><aucorp>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization</atitle><jtitle>Computer physics communications</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>180</volume><issue>12</issue><spage>2499</spage><epage>2512</epage><pages>2499-2512</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>ROOT is an object-oriented C++ framework conceived in the high-energy physics (HEP) community, designed for storing and analyzing petabytes of data in an efficient way. Any instance of a C++ class can be stored into a ROOT file in a machine-independent compressed binary format. In ROOT the TTree object container is optimized for statistical data analysis over very large data sets by using vertical data storage techniques. These containers can span a large number of files on local disks, the web, or a number of different shared file systems. In order to analyze this data, the user can chose out of a wide set of mathematical and statistical functions, including linear algebra classes, numerical algorithms such as integration and minimization, and various methods for performing regression analysis (fitting). In particular, the RooFit package allows the user to perform complex data modeling and fitting while the RooStats library provides abstractions and implementations for advanced statistical tools. Multivariate classification methods based on machine learning techniques are available via the TMVA package. A central piece in these analysis tools are the histogram classes which provide binning of one- and multi-dimensional data. Results can be saved in high-quality graphical formats like Postscript and PDF or in bitmap formats like JPG or GIF. The result can also be stored into ROOT macros that allow a full recreation and rework of the graphics. Users typically create their analysis macros step by step, making use of the interactive C++ interpreter CINT, while running over small data samples. Once the development is finished, they can run these macros at full compiled speed over large data sets, using on-the-fly compilation, or by creating a stand-alone batch program. Finally, if processing farms are available, the user can reduce the execution time of intrinsically parallel tasks — e.g. data mining in HEP — by using PROOF, which will take care of optimally distributing the work over the available resources in a transparent way.
Program title: ROOT
Catalogue identifier: AEFA_v1_0
Program summary URL:
http://cpc.cs.qub.ac.uk/summaries/AEFA_v1_0.html
Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland
Licensing provisions: LGPL
No. of lines in distributed program, including test data, etc.: 3 044 581
No. of bytes in distributed program, including test data, etc.: 36 325 133
Distribution format: tar.gz
Programming language: C++
Computer: Intel i386, Intel x86-64, Motorola PPC, Sun Sparc, HP PA-RISC
Operating system: GNU/Linux, Windows XP/Vista, Mac OS X, FreeBSD, OpenBSD, Solaris, HP-UX, AIX
Has the code been vectorized or parallelized?: Yes
RAM:
>
55
Mbytes
Classification: 4, 9, 11.9, 14
Nature of problem: Storage, analysis and visualization of scientific data
Solution method: Object store, wide range of analysis algorithms and visualization methods
Additional comments: For an up-to-date author list see:
http://root.cern.ch/drupal/content/root-development-team and
http://root.cern.ch/drupal/content/former-root-developers
Running time: Depending on the data size and complexity of analysis algorithms
References:
[1]
http://root.cern.ch.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2009.08.005</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4655 |
ispartof | Computer physics communications, 2009-12, Vol.180 (12), p.2499-2512 |
issn | 0010-4655 1879-2944 |
language | eng |
recordid | cdi_osti_scitechconnect_971694 |
source | Elsevier ScienceDirect Journals |
subjects | ALGEBRA ALGORITHMS C++ CLASSIFICATION Computing CONTAINERS Data analysis Data storage FARMS Framework GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE Interpreter LEARNING MINIMIZATION MINING Object-oriented PHYSICS PROCESSING REGRESSION ANALYSIS SIMULATION STORAGE VELOCITY Visualization |
title | ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ROOT%20%E2%80%94%20A%20C++%20framework%20for%20petabyte%20data%20storage,%20statistical%20analysis%20and%20visualization&rft.jtitle=Computer%20physics%20communications&rft.au=Antcheva,%20I.&rft.aucorp=Fermi%20National%20Accelerator%20Lab.%20(FNAL),%20Batavia,%20IL%20(United%20States)&rft.date=2009-12-01&rft.volume=180&rft.issue=12&rft.spage=2499&rft.epage=2512&rft.pages=2499-2512&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2009.08.005&rft_dat=%3Cproquest_osti_%3E35038494%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35038494&rft_id=info:pmid/&rft_els_id=S0010465509002550&rfr_iscdi=true |