Modeling Heat Conduction and Radiation Transport with the Diffusion Equation in NIF ALE-AMR

The ALE-AMR code developed for NIF is a multi-material hydro-code that models target assembly fragmentation in the aftermath of a shot. The combination of ALE (Arbitrary Lagrangian Eulerian) hydro with AMR (Adaptive Mesh Refinement) allows the code to model a wide range of physical conditions and sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fisher, A C, Bailey, D S, Kaiser, T B, Gunney, B N, Masters, N D, Koniges, A E, Eder, D C, Anderson, R W
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title
container_volume 244
creator Fisher, A C
Bailey, D S
Kaiser, T B
Gunney, B N
Masters, N D
Koniges, A E
Eder, D C
Anderson, R W
description The ALE-AMR code developed for NIF is a multi-material hydro-code that models target assembly fragmentation in the aftermath of a shot. The combination of ALE (Arbitrary Lagrangian Eulerian) hydro with AMR (Adaptive Mesh Refinement) allows the code to model a wide range of physical conditions and spatial scales. The large range of temperatures encountered in the NIF target chamber can lead to significant fluxes of energy due to thermal conduction and radiative transport. These physical effects can be modeled approximately with the aid of the diffusion equation. We present a novel method for the solution of the diffusion equation on a composite mesh in order to capture these physical effects.
format Conference Proceeding
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_967751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>967751</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_9677513</originalsourceid><addsrcrecordid>eNqNissOgjAURBujifj4h-sHkIAIDUuCEEzUBWHngjRtkRpyq7TE3_e5cOlsZk7mjIjj083ajcI4Gv_sKZkZc_G84BnqkNNBC9kpPEMhmYVUoxi4VRqBoYCSCcXeVPUMzVX3Fu7KtmBbCVvVNIN5ndlt-FgK4bjLIdlnbnIoF2TSsM7I5bfnZJVnVVq42lhVG66s5C3XiJLbOo4oDf3gH-cBBphCig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling Heat Conduction and Radiation Transport with the Diffusion Equation in NIF ALE-AMR</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fisher, A C ; Bailey, D S ; Kaiser, T B ; Gunney, B N ; Masters, N D ; Koniges, A E ; Eder, D C ; Anderson, R W</creator><creatorcontrib>Fisher, A C ; Bailey, D S ; Kaiser, T B ; Gunney, B N ; Masters, N D ; Koniges, A E ; Eder, D C ; Anderson, R W ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>The ALE-AMR code developed for NIF is a multi-material hydro-code that models target assembly fragmentation in the aftermath of a shot. The combination of ALE (Arbitrary Lagrangian Eulerian) hydro with AMR (Adaptive Mesh Refinement) allows the code to model a wide range of physical conditions and spatial scales. The large range of temperatures encountered in the NIF target chamber can lead to significant fluxes of energy due to thermal conduction and radiative transport. These physical effects can be modeled approximately with the aid of the diffusion equation. We present a novel method for the solution of the diffusion equation on a composite mesh in order to capture these physical effects.</description><identifier>ISSN: 1742-6596</identifier><identifier>EISSN: 1742-6596</identifier><language>eng</language><publisher>United States</publisher><subject>DIFFUSION EQUATIONS ; ENGINEERING ; FRAGMENTATION ; LAGRANGIAN FUNCTION ; MATERIALS SCIENCE ; RADIATION TRANSPORT ; SIMULATION ; TARGET CHAMBERS ; TARGETS ; THERMAL CONDUCTION ; TRANSPORT</subject><creationdate>2009</creationdate><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,780,784,789,885,23930</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/967751$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fisher, A C</creatorcontrib><creatorcontrib>Bailey, D S</creatorcontrib><creatorcontrib>Kaiser, T B</creatorcontrib><creatorcontrib>Gunney, B N</creatorcontrib><creatorcontrib>Masters, N D</creatorcontrib><creatorcontrib>Koniges, A E</creatorcontrib><creatorcontrib>Eder, D C</creatorcontrib><creatorcontrib>Anderson, R W</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Modeling Heat Conduction and Radiation Transport with the Diffusion Equation in NIF ALE-AMR</title><description>The ALE-AMR code developed for NIF is a multi-material hydro-code that models target assembly fragmentation in the aftermath of a shot. The combination of ALE (Arbitrary Lagrangian Eulerian) hydro with AMR (Adaptive Mesh Refinement) allows the code to model a wide range of physical conditions and spatial scales. The large range of temperatures encountered in the NIF target chamber can lead to significant fluxes of energy due to thermal conduction and radiative transport. These physical effects can be modeled approximately with the aid of the diffusion equation. We present a novel method for the solution of the diffusion equation on a composite mesh in order to capture these physical effects.</description><subject>DIFFUSION EQUATIONS</subject><subject>ENGINEERING</subject><subject>FRAGMENTATION</subject><subject>LAGRANGIAN FUNCTION</subject><subject>MATERIALS SCIENCE</subject><subject>RADIATION TRANSPORT</subject><subject>SIMULATION</subject><subject>TARGET CHAMBERS</subject><subject>TARGETS</subject><subject>THERMAL CONDUCTION</subject><subject>TRANSPORT</subject><issn>1742-6596</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNqNissOgjAURBujifj4h-sHkIAIDUuCEEzUBWHngjRtkRpyq7TE3_e5cOlsZk7mjIjj083ajcI4Gv_sKZkZc_G84BnqkNNBC9kpPEMhmYVUoxi4VRqBoYCSCcXeVPUMzVX3Fu7KtmBbCVvVNIN5ndlt-FgK4bjLIdlnbnIoF2TSsM7I5bfnZJVnVVq42lhVG66s5C3XiJLbOo4oDf3gH-cBBphCig</recordid><startdate>20091006</startdate><enddate>20091006</enddate><creator>Fisher, A C</creator><creator>Bailey, D S</creator><creator>Kaiser, T B</creator><creator>Gunney, B N</creator><creator>Masters, N D</creator><creator>Koniges, A E</creator><creator>Eder, D C</creator><creator>Anderson, R W</creator><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20091006</creationdate><title>Modeling Heat Conduction and Radiation Transport with the Diffusion Equation in NIF ALE-AMR</title><author>Fisher, A C ; Bailey, D S ; Kaiser, T B ; Gunney, B N ; Masters, N D ; Koniges, A E ; Eder, D C ; Anderson, R W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_9677513</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>DIFFUSION EQUATIONS</topic><topic>ENGINEERING</topic><topic>FRAGMENTATION</topic><topic>LAGRANGIAN FUNCTION</topic><topic>MATERIALS SCIENCE</topic><topic>RADIATION TRANSPORT</topic><topic>SIMULATION</topic><topic>TARGET CHAMBERS</topic><topic>TARGETS</topic><topic>THERMAL CONDUCTION</topic><topic>TRANSPORT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fisher, A C</creatorcontrib><creatorcontrib>Bailey, D S</creatorcontrib><creatorcontrib>Kaiser, T B</creatorcontrib><creatorcontrib>Gunney, B N</creatorcontrib><creatorcontrib>Masters, N D</creatorcontrib><creatorcontrib>Koniges, A E</creatorcontrib><creatorcontrib>Eder, D C</creatorcontrib><creatorcontrib>Anderson, R W</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fisher, A C</au><au>Bailey, D S</au><au>Kaiser, T B</au><au>Gunney, B N</au><au>Masters, N D</au><au>Koniges, A E</au><au>Eder, D C</au><au>Anderson, R W</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling Heat Conduction and Radiation Transport with the Diffusion Equation in NIF ALE-AMR</atitle><date>2009-10-06</date><risdate>2009</risdate><volume>244</volume><issue>2</issue><issn>1742-6596</issn><eissn>1742-6596</eissn><abstract>The ALE-AMR code developed for NIF is a multi-material hydro-code that models target assembly fragmentation in the aftermath of a shot. The combination of ALE (Arbitrary Lagrangian Eulerian) hydro with AMR (Adaptive Mesh Refinement) allows the code to model a wide range of physical conditions and spatial scales. The large range of temperatures encountered in the NIF target chamber can lead to significant fluxes of energy due to thermal conduction and radiative transport. These physical effects can be modeled approximately with the aid of the diffusion equation. We present a novel method for the solution of the diffusion equation on a composite mesh in order to capture these physical effects.</abstract><cop>United States</cop><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6596
ispartof
issn 1742-6596
1742-6596
language eng
recordid cdi_osti_scitechconnect_967751
source IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects DIFFUSION EQUATIONS
ENGINEERING
FRAGMENTATION
LAGRANGIAN FUNCTION
MATERIALS SCIENCE
RADIATION TRANSPORT
SIMULATION
TARGET CHAMBERS
TARGETS
THERMAL CONDUCTION
TRANSPORT
title Modeling Heat Conduction and Radiation Transport with the Diffusion Equation in NIF ALE-AMR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20Heat%20Conduction%20and%20Radiation%20Transport%20with%20the%20Diffusion%20Equation%20in%20NIF%20ALE-AMR&rft.au=Fisher,%20A%20C&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2009-10-06&rft.volume=244&rft.issue=2&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/&rft_dat=%3Costi%3E967751%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true