Modeling Heat Conduction and Radiation Transport with the Diffusion Equation in NIF ALE-AMR
The ALE-AMR code developed for NIF is a multi-material hydro-code that models target assembly fragmentation in the aftermath of a shot. The combination of ALE (Arbitrary Lagrangian Eulerian) hydro with AMR (Adaptive Mesh Refinement) allows the code to model a wide range of physical conditions and sp...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | |
container_volume | 244 |
creator | Fisher, A C Bailey, D S Kaiser, T B Gunney, B N Masters, N D Koniges, A E Eder, D C Anderson, R W |
description | The ALE-AMR code developed for NIF is a multi-material hydro-code that models target assembly fragmentation in the aftermath of a shot. The combination of ALE (Arbitrary Lagrangian Eulerian) hydro with AMR (Adaptive Mesh Refinement) allows the code to model a wide range of physical conditions and spatial scales. The large range of temperatures encountered in the NIF target chamber can lead to significant fluxes of energy due to thermal conduction and radiative transport. These physical effects can be modeled approximately with the aid of the diffusion equation. We present a novel method for the solution of the diffusion equation on a composite mesh in order to capture these physical effects. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_967751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>967751</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_9677513</originalsourceid><addsrcrecordid>eNqNissOgjAURBujifj4h-sHkIAIDUuCEEzUBWHngjRtkRpyq7TE3_e5cOlsZk7mjIjj083ajcI4Gv_sKZkZc_G84BnqkNNBC9kpPEMhmYVUoxi4VRqBoYCSCcXeVPUMzVX3Fu7KtmBbCVvVNIN5ndlt-FgK4bjLIdlnbnIoF2TSsM7I5bfnZJVnVVq42lhVG66s5C3XiJLbOo4oDf3gH-cBBphCig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling Heat Conduction and Radiation Transport with the Diffusion Equation in NIF ALE-AMR</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fisher, A C ; Bailey, D S ; Kaiser, T B ; Gunney, B N ; Masters, N D ; Koniges, A E ; Eder, D C ; Anderson, R W</creator><creatorcontrib>Fisher, A C ; Bailey, D S ; Kaiser, T B ; Gunney, B N ; Masters, N D ; Koniges, A E ; Eder, D C ; Anderson, R W ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>The ALE-AMR code developed for NIF is a multi-material hydro-code that models target assembly fragmentation in the aftermath of a shot. The combination of ALE (Arbitrary Lagrangian Eulerian) hydro with AMR (Adaptive Mesh Refinement) allows the code to model a wide range of physical conditions and spatial scales. The large range of temperatures encountered in the NIF target chamber can lead to significant fluxes of energy due to thermal conduction and radiative transport. These physical effects can be modeled approximately with the aid of the diffusion equation. We present a novel method for the solution of the diffusion equation on a composite mesh in order to capture these physical effects.</description><identifier>ISSN: 1742-6596</identifier><identifier>EISSN: 1742-6596</identifier><language>eng</language><publisher>United States</publisher><subject>DIFFUSION EQUATIONS ; ENGINEERING ; FRAGMENTATION ; LAGRANGIAN FUNCTION ; MATERIALS SCIENCE ; RADIATION TRANSPORT ; SIMULATION ; TARGET CHAMBERS ; TARGETS ; THERMAL CONDUCTION ; TRANSPORT</subject><creationdate>2009</creationdate><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,780,784,789,885,23930</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/967751$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fisher, A C</creatorcontrib><creatorcontrib>Bailey, D S</creatorcontrib><creatorcontrib>Kaiser, T B</creatorcontrib><creatorcontrib>Gunney, B N</creatorcontrib><creatorcontrib>Masters, N D</creatorcontrib><creatorcontrib>Koniges, A E</creatorcontrib><creatorcontrib>Eder, D C</creatorcontrib><creatorcontrib>Anderson, R W</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Modeling Heat Conduction and Radiation Transport with the Diffusion Equation in NIF ALE-AMR</title><description>The ALE-AMR code developed for NIF is a multi-material hydro-code that models target assembly fragmentation in the aftermath of a shot. The combination of ALE (Arbitrary Lagrangian Eulerian) hydro with AMR (Adaptive Mesh Refinement) allows the code to model a wide range of physical conditions and spatial scales. The large range of temperatures encountered in the NIF target chamber can lead to significant fluxes of energy due to thermal conduction and radiative transport. These physical effects can be modeled approximately with the aid of the diffusion equation. We present a novel method for the solution of the diffusion equation on a composite mesh in order to capture these physical effects.</description><subject>DIFFUSION EQUATIONS</subject><subject>ENGINEERING</subject><subject>FRAGMENTATION</subject><subject>LAGRANGIAN FUNCTION</subject><subject>MATERIALS SCIENCE</subject><subject>RADIATION TRANSPORT</subject><subject>SIMULATION</subject><subject>TARGET CHAMBERS</subject><subject>TARGETS</subject><subject>THERMAL CONDUCTION</subject><subject>TRANSPORT</subject><issn>1742-6596</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNqNissOgjAURBujifj4h-sHkIAIDUuCEEzUBWHngjRtkRpyq7TE3_e5cOlsZk7mjIjj083ajcI4Gv_sKZkZc_G84BnqkNNBC9kpPEMhmYVUoxi4VRqBoYCSCcXeVPUMzVX3Fu7KtmBbCVvVNIN5ndlt-FgK4bjLIdlnbnIoF2TSsM7I5bfnZJVnVVq42lhVG66s5C3XiJLbOo4oDf3gH-cBBphCig</recordid><startdate>20091006</startdate><enddate>20091006</enddate><creator>Fisher, A C</creator><creator>Bailey, D S</creator><creator>Kaiser, T B</creator><creator>Gunney, B N</creator><creator>Masters, N D</creator><creator>Koniges, A E</creator><creator>Eder, D C</creator><creator>Anderson, R W</creator><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20091006</creationdate><title>Modeling Heat Conduction and Radiation Transport with the Diffusion Equation in NIF ALE-AMR</title><author>Fisher, A C ; Bailey, D S ; Kaiser, T B ; Gunney, B N ; Masters, N D ; Koniges, A E ; Eder, D C ; Anderson, R W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_9677513</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>DIFFUSION EQUATIONS</topic><topic>ENGINEERING</topic><topic>FRAGMENTATION</topic><topic>LAGRANGIAN FUNCTION</topic><topic>MATERIALS SCIENCE</topic><topic>RADIATION TRANSPORT</topic><topic>SIMULATION</topic><topic>TARGET CHAMBERS</topic><topic>TARGETS</topic><topic>THERMAL CONDUCTION</topic><topic>TRANSPORT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fisher, A C</creatorcontrib><creatorcontrib>Bailey, D S</creatorcontrib><creatorcontrib>Kaiser, T B</creatorcontrib><creatorcontrib>Gunney, B N</creatorcontrib><creatorcontrib>Masters, N D</creatorcontrib><creatorcontrib>Koniges, A E</creatorcontrib><creatorcontrib>Eder, D C</creatorcontrib><creatorcontrib>Anderson, R W</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fisher, A C</au><au>Bailey, D S</au><au>Kaiser, T B</au><au>Gunney, B N</au><au>Masters, N D</au><au>Koniges, A E</au><au>Eder, D C</au><au>Anderson, R W</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling Heat Conduction and Radiation Transport with the Diffusion Equation in NIF ALE-AMR</atitle><date>2009-10-06</date><risdate>2009</risdate><volume>244</volume><issue>2</issue><issn>1742-6596</issn><eissn>1742-6596</eissn><abstract>The ALE-AMR code developed for NIF is a multi-material hydro-code that models target assembly fragmentation in the aftermath of a shot. The combination of ALE (Arbitrary Lagrangian Eulerian) hydro with AMR (Adaptive Mesh Refinement) allows the code to model a wide range of physical conditions and spatial scales. The large range of temperatures encountered in the NIF target chamber can lead to significant fluxes of energy due to thermal conduction and radiative transport. These physical effects can be modeled approximately with the aid of the diffusion equation. We present a novel method for the solution of the diffusion equation on a composite mesh in order to capture these physical effects.</abstract><cop>United States</cop><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6596 |
ispartof | |
issn | 1742-6596 1742-6596 |
language | eng |
recordid | cdi_osti_scitechconnect_967751 |
source | IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | DIFFUSION EQUATIONS ENGINEERING FRAGMENTATION LAGRANGIAN FUNCTION MATERIALS SCIENCE RADIATION TRANSPORT SIMULATION TARGET CHAMBERS TARGETS THERMAL CONDUCTION TRANSPORT |
title | Modeling Heat Conduction and Radiation Transport with the Diffusion Equation in NIF ALE-AMR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20Heat%20Conduction%20and%20Radiation%20Transport%20with%20the%20Diffusion%20Equation%20in%20NIF%20ALE-AMR&rft.au=Fisher,%20A%20C&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2009-10-06&rft.volume=244&rft.issue=2&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/&rft_dat=%3Costi%3E967751%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |