A global poverty map derived from satellite data
A global poverty map has been produced at 30 arcsec resolution using a poverty index calculated by dividing population count (LandScan 2004) by the brightness of satellite observed lighting (DMSP nighttime lights). Inputs to the LandScan product include satellite-derived land cover and topography, p...
Gespeichert in:
Veröffentlicht in: | Computers & geosciences 2009-08, Vol.35 (8), p.1652-1660 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1660 |
---|---|
container_issue | 8 |
container_start_page | 1652 |
container_title | Computers & geosciences |
container_volume | 35 |
creator | Elvidge, Christopher D. Sutton, Paul C. Ghosh, Tilottama Tuttle, Benjamin T. Baugh, Kimberly E. Bhaduri, Budhendra Bright, Edward |
description | A global poverty map has been produced at 30
arcsec resolution using a poverty index calculated by dividing population count (LandScan 2004) by the brightness of satellite observed lighting (DMSP nighttime lights). Inputs to the LandScan product include satellite-derived land cover and topography, plus human settlement outlines derived from high-resolution imagery. The poverty estimates have been calibrated using national level poverty data from the World Development Indicators (WDI) 2006 edition. The total estimate of the numbers of individuals living in poverty is 2.2 billion, slightly under the WDI estimate of 2.6 billion. We have demonstrated a new class of poverty map that should improve over time through the inclusion of new reference data for calibration of poverty estimates and as improvements are made in the satellite observation of human activities related to economic activity and technology access. |
doi_str_mv | 10.1016/j.cageo.2009.01.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_961792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098300409001253</els_id><sourcerecordid>35197595</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-8887eeb894c068e4807bce278874db579b37745665528bf278d60bbd5db569353</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwC1jCAFvCOYlje2CoKr6kSiwwW45zKa7SuNhppf57HFoxgm54pbvnvl5CrilkFGh1v8qMXqLLcgCZAc2inJAJFbxIuYDilExiRqQFQHlOLkJYAUCeCzYhMEuWnat1l2zcDv2wT9Z6kzTo7Q6bpPVunQQ9YNfZAZNGD_qSnLW6C3h11Cn5eHp8n7-ki7fn1_lskeqyLIdUCMERayFLA5XAUgCvDeY8psumZlzWBeclqyrGclG3sdBUUNcNi8VKFqyYkpvDXBcGq4KJ-82ncX2PZlCyolzmkbk7MBvvvrYYBrW2wcRjdY9uG1TBqORMsn_BnMYjJR0nFgfQeBeCx1ZtvF1rv1cU1Gi1Wqkfq9VotQKqosSu2-N4HYzuWq97Y8Nva04FlTEi93DgMBq3s-jHv7A32Fg_vtU4--eeb6s7kmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21068912</pqid></control><display><type>article</type><title>A global poverty map derived from satellite data</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Elvidge, Christopher D. ; Sutton, Paul C. ; Ghosh, Tilottama ; Tuttle, Benjamin T. ; Baugh, Kimberly E. ; Bhaduri, Budhendra ; Bright, Edward</creator><creatorcontrib>Elvidge, Christopher D. ; Sutton, Paul C. ; Ghosh, Tilottama ; Tuttle, Benjamin T. ; Baugh, Kimberly E. ; Bhaduri, Budhendra ; Bright, Edward ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>A global poverty map has been produced at 30
arcsec resolution using a poverty index calculated by dividing population count (LandScan 2004) by the brightness of satellite observed lighting (DMSP nighttime lights). Inputs to the LandScan product include satellite-derived land cover and topography, plus human settlement outlines derived from high-resolution imagery. The poverty estimates have been calibrated using national level poverty data from the World Development Indicators (WDI) 2006 edition. The total estimate of the numbers of individuals living in poverty is 2.2 billion, slightly under the WDI estimate of 2.6 billion. We have demonstrated a new class of poverty map that should improve over time through the inclusion of new reference data for calibration of poverty estimates and as improvements are made in the satellite observation of human activities related to economic activity and technology access.</description><identifier>ISSN: 0098-3004</identifier><identifier>EISSN: 1873-7803</identifier><identifier>DOI: 10.1016/j.cageo.2009.01.009</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Areal geology. Maps ; BRIGHTNESS ; CALIBRATION ; DATA ; DMSP ; Earth sciences ; Earth, ocean, space ; ECONOMICS ; Exact sciences and technology ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Geologic maps, cartography ; GEOSCIENCES ; HUMAN POPULATIONS ; LOW INCOME GROUPS ; Nighttime lights ; Poverty ; REMOTE SENSING ; SATELLITES ; TOPOGRAPHY ; World development indicators</subject><ispartof>Computers & geosciences, 2009-08, Vol.35 (8), p.1652-1660</ispartof><rights>2009</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-8887eeb894c068e4807bce278874db579b37745665528bf278d60bbd5db569353</citedby><cites>FETCH-LOGICAL-a444t-8887eeb894c068e4807bce278874db579b37745665528bf278d60bbd5db569353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0098300409001253$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21819191$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/961792$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Elvidge, Christopher D.</creatorcontrib><creatorcontrib>Sutton, Paul C.</creatorcontrib><creatorcontrib>Ghosh, Tilottama</creatorcontrib><creatorcontrib>Tuttle, Benjamin T.</creatorcontrib><creatorcontrib>Baugh, Kimberly E.</creatorcontrib><creatorcontrib>Bhaduri, Budhendra</creatorcontrib><creatorcontrib>Bright, Edward</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>A global poverty map derived from satellite data</title><title>Computers & geosciences</title><description>A global poverty map has been produced at 30
arcsec resolution using a poverty index calculated by dividing population count (LandScan 2004) by the brightness of satellite observed lighting (DMSP nighttime lights). Inputs to the LandScan product include satellite-derived land cover and topography, plus human settlement outlines derived from high-resolution imagery. The poverty estimates have been calibrated using national level poverty data from the World Development Indicators (WDI) 2006 edition. The total estimate of the numbers of individuals living in poverty is 2.2 billion, slightly under the WDI estimate of 2.6 billion. We have demonstrated a new class of poverty map that should improve over time through the inclusion of new reference data for calibration of poverty estimates and as improvements are made in the satellite observation of human activities related to economic activity and technology access.</description><subject>Areal geology. Maps</subject><subject>BRIGHTNESS</subject><subject>CALIBRATION</subject><subject>DATA</subject><subject>DMSP</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>ECONOMICS</subject><subject>Exact sciences and technology</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Geologic maps, cartography</subject><subject>GEOSCIENCES</subject><subject>HUMAN POPULATIONS</subject><subject>LOW INCOME GROUPS</subject><subject>Nighttime lights</subject><subject>Poverty</subject><subject>REMOTE SENSING</subject><subject>SATELLITES</subject><subject>TOPOGRAPHY</subject><subject>World development indicators</subject><issn>0098-3004</issn><issn>1873-7803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwC1jCAFvCOYlje2CoKr6kSiwwW45zKa7SuNhppf57HFoxgm54pbvnvl5CrilkFGh1v8qMXqLLcgCZAc2inJAJFbxIuYDilExiRqQFQHlOLkJYAUCeCzYhMEuWnat1l2zcDv2wT9Z6kzTo7Q6bpPVunQQ9YNfZAZNGD_qSnLW6C3h11Cn5eHp8n7-ki7fn1_lskeqyLIdUCMERayFLA5XAUgCvDeY8psumZlzWBeclqyrGclG3sdBUUNcNi8VKFqyYkpvDXBcGq4KJ-82ncX2PZlCyolzmkbk7MBvvvrYYBrW2wcRjdY9uG1TBqORMsn_BnMYjJR0nFgfQeBeCx1ZtvF1rv1cU1Gi1Wqkfq9VotQKqosSu2-N4HYzuWq97Y8Nva04FlTEi93DgMBq3s-jHv7A32Fg_vtU4--eeb6s7kmA</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Elvidge, Christopher D.</creator><creator>Sutton, Paul C.</creator><creator>Ghosh, Tilottama</creator><creator>Tuttle, Benjamin T.</creator><creator>Baugh, Kimberly E.</creator><creator>Bhaduri, Budhendra</creator><creator>Bright, Edward</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20090801</creationdate><title>A global poverty map derived from satellite data</title><author>Elvidge, Christopher D. ; Sutton, Paul C. ; Ghosh, Tilottama ; Tuttle, Benjamin T. ; Baugh, Kimberly E. ; Bhaduri, Budhendra ; Bright, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-8887eeb894c068e4807bce278874db579b37745665528bf278d60bbd5db569353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Areal geology. Maps</topic><topic>BRIGHTNESS</topic><topic>CALIBRATION</topic><topic>DATA</topic><topic>DMSP</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>ECONOMICS</topic><topic>Exact sciences and technology</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Geologic maps, cartography</topic><topic>GEOSCIENCES</topic><topic>HUMAN POPULATIONS</topic><topic>LOW INCOME GROUPS</topic><topic>Nighttime lights</topic><topic>Poverty</topic><topic>REMOTE SENSING</topic><topic>SATELLITES</topic><topic>TOPOGRAPHY</topic><topic>World development indicators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elvidge, Christopher D.</creatorcontrib><creatorcontrib>Sutton, Paul C.</creatorcontrib><creatorcontrib>Ghosh, Tilottama</creatorcontrib><creatorcontrib>Tuttle, Benjamin T.</creatorcontrib><creatorcontrib>Baugh, Kimberly E.</creatorcontrib><creatorcontrib>Bhaduri, Budhendra</creatorcontrib><creatorcontrib>Bright, Edward</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Computers & geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elvidge, Christopher D.</au><au>Sutton, Paul C.</au><au>Ghosh, Tilottama</au><au>Tuttle, Benjamin T.</au><au>Baugh, Kimberly E.</au><au>Bhaduri, Budhendra</au><au>Bright, Edward</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A global poverty map derived from satellite data</atitle><jtitle>Computers & geosciences</jtitle><date>2009-08-01</date><risdate>2009</risdate><volume>35</volume><issue>8</issue><spage>1652</spage><epage>1660</epage><pages>1652-1660</pages><issn>0098-3004</issn><eissn>1873-7803</eissn><abstract>A global poverty map has been produced at 30
arcsec resolution using a poverty index calculated by dividing population count (LandScan 2004) by the brightness of satellite observed lighting (DMSP nighttime lights). Inputs to the LandScan product include satellite-derived land cover and topography, plus human settlement outlines derived from high-resolution imagery. The poverty estimates have been calibrated using national level poverty data from the World Development Indicators (WDI) 2006 edition. The total estimate of the numbers of individuals living in poverty is 2.2 billion, slightly under the WDI estimate of 2.6 billion. We have demonstrated a new class of poverty map that should improve over time through the inclusion of new reference data for calibration of poverty estimates and as improvements are made in the satellite observation of human activities related to economic activity and technology access.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cageo.2009.01.009</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-3004 |
ispartof | Computers & geosciences, 2009-08, Vol.35 (8), p.1652-1660 |
issn | 0098-3004 1873-7803 |
language | eng |
recordid | cdi_osti_scitechconnect_961792 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Areal geology. Maps BRIGHTNESS CALIBRATION DATA DMSP Earth sciences Earth, ocean, space ECONOMICS Exact sciences and technology GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE Geologic maps, cartography GEOSCIENCES HUMAN POPULATIONS LOW INCOME GROUPS Nighttime lights Poverty REMOTE SENSING SATELLITES TOPOGRAPHY World development indicators |
title | A global poverty map derived from satellite data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20global%20poverty%20map%20derived%20from%20satellite%20data&rft.jtitle=Computers%20&%20geosciences&rft.au=Elvidge,%20Christopher%20D.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2009-08-01&rft.volume=35&rft.issue=8&rft.spage=1652&rft.epage=1660&rft.pages=1652-1660&rft.issn=0098-3004&rft.eissn=1873-7803&rft_id=info:doi/10.1016/j.cageo.2009.01.009&rft_dat=%3Cproquest_osti_%3E35197595%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21068912&rft_id=info:pmid/&rft_els_id=S0098300409001253&rfr_iscdi=true |