A global poverty map derived from satellite data

A global poverty map has been produced at 30 arcsec resolution using a poverty index calculated by dividing population count (LandScan 2004) by the brightness of satellite observed lighting (DMSP nighttime lights). Inputs to the LandScan product include satellite-derived land cover and topography, p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & geosciences 2009-08, Vol.35 (8), p.1652-1660
Hauptverfasser: Elvidge, Christopher D., Sutton, Paul C., Ghosh, Tilottama, Tuttle, Benjamin T., Baugh, Kimberly E., Bhaduri, Budhendra, Bright, Edward
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1660
container_issue 8
container_start_page 1652
container_title Computers & geosciences
container_volume 35
creator Elvidge, Christopher D.
Sutton, Paul C.
Ghosh, Tilottama
Tuttle, Benjamin T.
Baugh, Kimberly E.
Bhaduri, Budhendra
Bright, Edward
description A global poverty map has been produced at 30 arcsec resolution using a poverty index calculated by dividing population count (LandScan 2004) by the brightness of satellite observed lighting (DMSP nighttime lights). Inputs to the LandScan product include satellite-derived land cover and topography, plus human settlement outlines derived from high-resolution imagery. The poverty estimates have been calibrated using national level poverty data from the World Development Indicators (WDI) 2006 edition. The total estimate of the numbers of individuals living in poverty is 2.2 billion, slightly under the WDI estimate of 2.6 billion. We have demonstrated a new class of poverty map that should improve over time through the inclusion of new reference data for calibration of poverty estimates and as improvements are made in the satellite observation of human activities related to economic activity and technology access.
doi_str_mv 10.1016/j.cageo.2009.01.009
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_961792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098300409001253</els_id><sourcerecordid>35197595</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-8887eeb894c068e4807bce278874db579b37745665528bf278d60bbd5db569353</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwC1jCAFvCOYlje2CoKr6kSiwwW45zKa7SuNhppf57HFoxgm54pbvnvl5CrilkFGh1v8qMXqLLcgCZAc2inJAJFbxIuYDilExiRqQFQHlOLkJYAUCeCzYhMEuWnat1l2zcDv2wT9Z6kzTo7Q6bpPVunQQ9YNfZAZNGD_qSnLW6C3h11Cn5eHp8n7-ki7fn1_lskeqyLIdUCMERayFLA5XAUgCvDeY8psumZlzWBeclqyrGclG3sdBUUNcNi8VKFqyYkpvDXBcGq4KJ-82ncX2PZlCyolzmkbk7MBvvvrYYBrW2wcRjdY9uG1TBqORMsn_BnMYjJR0nFgfQeBeCx1ZtvF1rv1cU1Gi1Wqkfq9VotQKqosSu2-N4HYzuWq97Y8Nva04FlTEi93DgMBq3s-jHv7A32Fg_vtU4--eeb6s7kmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21068912</pqid></control><display><type>article</type><title>A global poverty map derived from satellite data</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Elvidge, Christopher D. ; Sutton, Paul C. ; Ghosh, Tilottama ; Tuttle, Benjamin T. ; Baugh, Kimberly E. ; Bhaduri, Budhendra ; Bright, Edward</creator><creatorcontrib>Elvidge, Christopher D. ; Sutton, Paul C. ; Ghosh, Tilottama ; Tuttle, Benjamin T. ; Baugh, Kimberly E. ; Bhaduri, Budhendra ; Bright, Edward ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>A global poverty map has been produced at 30 arcsec resolution using a poverty index calculated by dividing population count (LandScan 2004) by the brightness of satellite observed lighting (DMSP nighttime lights). Inputs to the LandScan product include satellite-derived land cover and topography, plus human settlement outlines derived from high-resolution imagery. The poverty estimates have been calibrated using national level poverty data from the World Development Indicators (WDI) 2006 edition. The total estimate of the numbers of individuals living in poverty is 2.2 billion, slightly under the WDI estimate of 2.6 billion. We have demonstrated a new class of poverty map that should improve over time through the inclusion of new reference data for calibration of poverty estimates and as improvements are made in the satellite observation of human activities related to economic activity and technology access.</description><identifier>ISSN: 0098-3004</identifier><identifier>EISSN: 1873-7803</identifier><identifier>DOI: 10.1016/j.cageo.2009.01.009</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Areal geology. Maps ; BRIGHTNESS ; CALIBRATION ; DATA ; DMSP ; Earth sciences ; Earth, ocean, space ; ECONOMICS ; Exact sciences and technology ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Geologic maps, cartography ; GEOSCIENCES ; HUMAN POPULATIONS ; LOW INCOME GROUPS ; Nighttime lights ; Poverty ; REMOTE SENSING ; SATELLITES ; TOPOGRAPHY ; World development indicators</subject><ispartof>Computers &amp; geosciences, 2009-08, Vol.35 (8), p.1652-1660</ispartof><rights>2009</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-8887eeb894c068e4807bce278874db579b37745665528bf278d60bbd5db569353</citedby><cites>FETCH-LOGICAL-a444t-8887eeb894c068e4807bce278874db579b37745665528bf278d60bbd5db569353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0098300409001253$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21819191$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/961792$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Elvidge, Christopher D.</creatorcontrib><creatorcontrib>Sutton, Paul C.</creatorcontrib><creatorcontrib>Ghosh, Tilottama</creatorcontrib><creatorcontrib>Tuttle, Benjamin T.</creatorcontrib><creatorcontrib>Baugh, Kimberly E.</creatorcontrib><creatorcontrib>Bhaduri, Budhendra</creatorcontrib><creatorcontrib>Bright, Edward</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>A global poverty map derived from satellite data</title><title>Computers &amp; geosciences</title><description>A global poverty map has been produced at 30 arcsec resolution using a poverty index calculated by dividing population count (LandScan 2004) by the brightness of satellite observed lighting (DMSP nighttime lights). Inputs to the LandScan product include satellite-derived land cover and topography, plus human settlement outlines derived from high-resolution imagery. The poverty estimates have been calibrated using national level poverty data from the World Development Indicators (WDI) 2006 edition. The total estimate of the numbers of individuals living in poverty is 2.2 billion, slightly under the WDI estimate of 2.6 billion. We have demonstrated a new class of poverty map that should improve over time through the inclusion of new reference data for calibration of poverty estimates and as improvements are made in the satellite observation of human activities related to economic activity and technology access.</description><subject>Areal geology. Maps</subject><subject>BRIGHTNESS</subject><subject>CALIBRATION</subject><subject>DATA</subject><subject>DMSP</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>ECONOMICS</subject><subject>Exact sciences and technology</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Geologic maps, cartography</subject><subject>GEOSCIENCES</subject><subject>HUMAN POPULATIONS</subject><subject>LOW INCOME GROUPS</subject><subject>Nighttime lights</subject><subject>Poverty</subject><subject>REMOTE SENSING</subject><subject>SATELLITES</subject><subject>TOPOGRAPHY</subject><subject>World development indicators</subject><issn>0098-3004</issn><issn>1873-7803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwC1jCAFvCOYlje2CoKr6kSiwwW45zKa7SuNhppf57HFoxgm54pbvnvl5CrilkFGh1v8qMXqLLcgCZAc2inJAJFbxIuYDilExiRqQFQHlOLkJYAUCeCzYhMEuWnat1l2zcDv2wT9Z6kzTo7Q6bpPVunQQ9YNfZAZNGD_qSnLW6C3h11Cn5eHp8n7-ki7fn1_lskeqyLIdUCMERayFLA5XAUgCvDeY8psumZlzWBeclqyrGclG3sdBUUNcNi8VKFqyYkpvDXBcGq4KJ-82ncX2PZlCyolzmkbk7MBvvvrYYBrW2wcRjdY9uG1TBqORMsn_BnMYjJR0nFgfQeBeCx1ZtvF1rv1cU1Gi1Wqkfq9VotQKqosSu2-N4HYzuWq97Y8Nva04FlTEi93DgMBq3s-jHv7A32Fg_vtU4--eeb6s7kmA</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Elvidge, Christopher D.</creator><creator>Sutton, Paul C.</creator><creator>Ghosh, Tilottama</creator><creator>Tuttle, Benjamin T.</creator><creator>Baugh, Kimberly E.</creator><creator>Bhaduri, Budhendra</creator><creator>Bright, Edward</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20090801</creationdate><title>A global poverty map derived from satellite data</title><author>Elvidge, Christopher D. ; Sutton, Paul C. ; Ghosh, Tilottama ; Tuttle, Benjamin T. ; Baugh, Kimberly E. ; Bhaduri, Budhendra ; Bright, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-8887eeb894c068e4807bce278874db579b37745665528bf278d60bbd5db569353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Areal geology. Maps</topic><topic>BRIGHTNESS</topic><topic>CALIBRATION</topic><topic>DATA</topic><topic>DMSP</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>ECONOMICS</topic><topic>Exact sciences and technology</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Geologic maps, cartography</topic><topic>GEOSCIENCES</topic><topic>HUMAN POPULATIONS</topic><topic>LOW INCOME GROUPS</topic><topic>Nighttime lights</topic><topic>Poverty</topic><topic>REMOTE SENSING</topic><topic>SATELLITES</topic><topic>TOPOGRAPHY</topic><topic>World development indicators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elvidge, Christopher D.</creatorcontrib><creatorcontrib>Sutton, Paul C.</creatorcontrib><creatorcontrib>Ghosh, Tilottama</creatorcontrib><creatorcontrib>Tuttle, Benjamin T.</creatorcontrib><creatorcontrib>Baugh, Kimberly E.</creatorcontrib><creatorcontrib>Bhaduri, Budhendra</creatorcontrib><creatorcontrib>Bright, Edward</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Computers &amp; geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elvidge, Christopher D.</au><au>Sutton, Paul C.</au><au>Ghosh, Tilottama</au><au>Tuttle, Benjamin T.</au><au>Baugh, Kimberly E.</au><au>Bhaduri, Budhendra</au><au>Bright, Edward</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A global poverty map derived from satellite data</atitle><jtitle>Computers &amp; geosciences</jtitle><date>2009-08-01</date><risdate>2009</risdate><volume>35</volume><issue>8</issue><spage>1652</spage><epage>1660</epage><pages>1652-1660</pages><issn>0098-3004</issn><eissn>1873-7803</eissn><abstract>A global poverty map has been produced at 30 arcsec resolution using a poverty index calculated by dividing population count (LandScan 2004) by the brightness of satellite observed lighting (DMSP nighttime lights). Inputs to the LandScan product include satellite-derived land cover and topography, plus human settlement outlines derived from high-resolution imagery. The poverty estimates have been calibrated using national level poverty data from the World Development Indicators (WDI) 2006 edition. The total estimate of the numbers of individuals living in poverty is 2.2 billion, slightly under the WDI estimate of 2.6 billion. We have demonstrated a new class of poverty map that should improve over time through the inclusion of new reference data for calibration of poverty estimates and as improvements are made in the satellite observation of human activities related to economic activity and technology access.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cageo.2009.01.009</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-3004
ispartof Computers & geosciences, 2009-08, Vol.35 (8), p.1652-1660
issn 0098-3004
1873-7803
language eng
recordid cdi_osti_scitechconnect_961792
source Elsevier ScienceDirect Journals Complete
subjects Areal geology. Maps
BRIGHTNESS
CALIBRATION
DATA
DMSP
Earth sciences
Earth, ocean, space
ECONOMICS
Exact sciences and technology
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
Geologic maps, cartography
GEOSCIENCES
HUMAN POPULATIONS
LOW INCOME GROUPS
Nighttime lights
Poverty
REMOTE SENSING
SATELLITES
TOPOGRAPHY
World development indicators
title A global poverty map derived from satellite data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20global%20poverty%20map%20derived%20from%20satellite%20data&rft.jtitle=Computers%20&%20geosciences&rft.au=Elvidge,%20Christopher%20D.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2009-08-01&rft.volume=35&rft.issue=8&rft.spage=1652&rft.epage=1660&rft.pages=1652-1660&rft.issn=0098-3004&rft.eissn=1873-7803&rft_id=info:doi/10.1016/j.cageo.2009.01.009&rft_dat=%3Cproquest_osti_%3E35197595%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21068912&rft_id=info:pmid/&rft_els_id=S0098300409001253&rfr_iscdi=true