Mimetic finite difference method for the Stokes problem on polygonal meshes
Various approaches to extend finite element methods to non-traditional elements (general polygons, pyramids, polyhedra, etc.) have been developed over the last decade. The construction of basis functions for such elements is a challenging task and may require extensive geometrical analysis. The mime...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2009-10, Vol.228 (19), p.7215-7232 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7232 |
---|---|
container_issue | 19 |
container_start_page | 7215 |
container_title | Journal of computational physics |
container_volume | 228 |
creator | Beirão da Veiga, L. Gyrya, V. Lipnikov, K. Manzini, G. |
description | Various approaches to extend finite element methods to non-traditional elements (general polygons, pyramids, polyhedra, etc.) have been developed over the last decade. The construction of basis functions for such elements is a challenging task and may require extensive geometrical analysis. The mimetic finite difference (MFD) method works on general polygonal meshes and has many similarities with low-order finite element methods. Both schemes try to preserve the fundamental properties of the underlying physical and mathematical models. The essential difference between the two schemes is that the MFD method uses only the surface representation of discrete unknowns to build the stiffness and mass matrices. Since no extension of basis functions inside the mesh elements is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we present a new MFD method for the Stokes problem on arbitrary polygonal meshes and analyze its stability. The method is developed for the general case of tensor coefficients, which allows us to apply it to a linear elasticity problem, as well. Numerical experiments show, for the velocity variable, second-order convergence in a discrete
L
2
norm and first-order convergence in a discrete
H
1
norm. For the pressure variable, first-order convergence is shown in the
L
2
norm. |
doi_str_mv | 10.1016/j.jcp.2009.06.034 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_956391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199910900343X</els_id><sourcerecordid>S002199910900343X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-7e4db77d560e4f06bca3735cc0beb600bed4b43dee0177726943d1c586b1156b3</originalsourceid><addsrcrecordid>eNp9kMtOxCAUhonRxPHyAO5w4bL10AstcWUm3uIYF-qaFDi11E5poDGZt5dmjEs3EMj3c34-Qi4YpAwYv-7TXk9pBiBS4CnkxQFZMRCQZBXjh2QFkLFECMGOyUkIPQDUZVGvyPOL3eJsNW3taGekxrYtehw10njfOUNb5-ncIX2b3RcGOnmnBtxSN9LJDbtPNzZDREOH4Ywctc0Q8Px3PyUf93fv68dk8_rwtL7dJDoXfE4qLIyqKlNywKIFrnSTV3mpNShUHOJqClXkBhFYVVUZF_HAdFlzxVjJVX5KLvfvujBbGXTsrTvtxhH1LEXJc8Eiw_aM9i4Ej62cvN02ficZyMWY7GU0JhdjEriMxmLmap-ZmqCbofXNqG34C2asjs4Yj9zNnsP4yW-LfumwKDPWLxWMs_9M-QEpeIDN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mimetic finite difference method for the Stokes problem on polygonal meshes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Beirão da Veiga, L. ; Gyrya, V. ; Lipnikov, K. ; Manzini, G.</creator><creatorcontrib>Beirão da Veiga, L. ; Gyrya, V. ; Lipnikov, K. ; Manzini, G. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Various approaches to extend finite element methods to non-traditional elements (general polygons, pyramids, polyhedra, etc.) have been developed over the last decade. The construction of basis functions for such elements is a challenging task and may require extensive geometrical analysis. The mimetic finite difference (MFD) method works on general polygonal meshes and has many similarities with low-order finite element methods. Both schemes try to preserve the fundamental properties of the underlying physical and mathematical models. The essential difference between the two schemes is that the MFD method uses only the surface representation of discrete unknowns to build the stiffness and mass matrices. Since no extension of basis functions inside the mesh elements is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we present a new MFD method for the Stokes problem on arbitrary polygonal meshes and analyze its stability. The method is developed for the general case of tensor coefficients, which allows us to apply it to a linear elasticity problem, as well. Numerical experiments show, for the velocity variable, second-order convergence in a discrete
L
2
norm and first-order convergence in a discrete
H
1
norm. For the pressure variable, first-order convergence is shown in the
L
2
norm.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2009.06.034</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Computational techniques ; CONVERGENCE ; ELASTICITY ; Exact sciences and technology ; FINITE DIFFERENCE METHOD ; FINITE ELEMENT METHOD ; FLEXIBILITY ; GENERAL AND MISCELLANEOUS ; GEOMETRY ; IMPLEMENTATION ; Incompressible Stokes equations ; Mathematical methods in physics ; MATHEMATICAL MODELS ; MATRICES ; Mimetic discretization ; Physics ; Polygonal mesh ; VELOCITY</subject><ispartof>Journal of computational physics, 2009-10, Vol.228 (19), p.7215-7232</ispartof><rights>2009 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-7e4db77d560e4f06bca3735cc0beb600bed4b43dee0177726943d1c586b1156b3</citedby><cites>FETCH-LOGICAL-c396t-7e4db77d560e4f06bca3735cc0beb600bed4b43dee0177726943d1c586b1156b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2009.06.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21885416$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/956391$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Beirão da Veiga, L.</creatorcontrib><creatorcontrib>Gyrya, V.</creatorcontrib><creatorcontrib>Lipnikov, K.</creatorcontrib><creatorcontrib>Manzini, G.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Mimetic finite difference method for the Stokes problem on polygonal meshes</title><title>Journal of computational physics</title><description>Various approaches to extend finite element methods to non-traditional elements (general polygons, pyramids, polyhedra, etc.) have been developed over the last decade. The construction of basis functions for such elements is a challenging task and may require extensive geometrical analysis. The mimetic finite difference (MFD) method works on general polygonal meshes and has many similarities with low-order finite element methods. Both schemes try to preserve the fundamental properties of the underlying physical and mathematical models. The essential difference between the two schemes is that the MFD method uses only the surface representation of discrete unknowns to build the stiffness and mass matrices. Since no extension of basis functions inside the mesh elements is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we present a new MFD method for the Stokes problem on arbitrary polygonal meshes and analyze its stability. The method is developed for the general case of tensor coefficients, which allows us to apply it to a linear elasticity problem, as well. Numerical experiments show, for the velocity variable, second-order convergence in a discrete
L
2
norm and first-order convergence in a discrete
H
1
norm. For the pressure variable, first-order convergence is shown in the
L
2
norm.</description><subject>Computational techniques</subject><subject>CONVERGENCE</subject><subject>ELASTICITY</subject><subject>Exact sciences and technology</subject><subject>FINITE DIFFERENCE METHOD</subject><subject>FINITE ELEMENT METHOD</subject><subject>FLEXIBILITY</subject><subject>GENERAL AND MISCELLANEOUS</subject><subject>GEOMETRY</subject><subject>IMPLEMENTATION</subject><subject>Incompressible Stokes equations</subject><subject>Mathematical methods in physics</subject><subject>MATHEMATICAL MODELS</subject><subject>MATRICES</subject><subject>Mimetic discretization</subject><subject>Physics</subject><subject>Polygonal mesh</subject><subject>VELOCITY</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOxCAUhonRxPHyAO5w4bL10AstcWUm3uIYF-qaFDi11E5poDGZt5dmjEs3EMj3c34-Qi4YpAwYv-7TXk9pBiBS4CnkxQFZMRCQZBXjh2QFkLFECMGOyUkIPQDUZVGvyPOL3eJsNW3taGekxrYtehw10njfOUNb5-ncIX2b3RcGOnmnBtxSN9LJDbtPNzZDREOH4Ywctc0Q8Px3PyUf93fv68dk8_rwtL7dJDoXfE4qLIyqKlNywKIFrnSTV3mpNShUHOJqClXkBhFYVVUZF_HAdFlzxVjJVX5KLvfvujBbGXTsrTvtxhH1LEXJc8Eiw_aM9i4Ej62cvN02ficZyMWY7GU0JhdjEriMxmLmap-ZmqCbofXNqG34C2asjs4Yj9zNnsP4yW-LfumwKDPWLxWMs_9M-QEpeIDN</recordid><startdate>20091020</startdate><enddate>20091020</enddate><creator>Beirão da Veiga, L.</creator><creator>Gyrya, V.</creator><creator>Lipnikov, K.</creator><creator>Manzini, G.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20091020</creationdate><title>Mimetic finite difference method for the Stokes problem on polygonal meshes</title><author>Beirão da Veiga, L. ; Gyrya, V. ; Lipnikov, K. ; Manzini, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-7e4db77d560e4f06bca3735cc0beb600bed4b43dee0177726943d1c586b1156b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computational techniques</topic><topic>CONVERGENCE</topic><topic>ELASTICITY</topic><topic>Exact sciences and technology</topic><topic>FINITE DIFFERENCE METHOD</topic><topic>FINITE ELEMENT METHOD</topic><topic>FLEXIBILITY</topic><topic>GENERAL AND MISCELLANEOUS</topic><topic>GEOMETRY</topic><topic>IMPLEMENTATION</topic><topic>Incompressible Stokes equations</topic><topic>Mathematical methods in physics</topic><topic>MATHEMATICAL MODELS</topic><topic>MATRICES</topic><topic>Mimetic discretization</topic><topic>Physics</topic><topic>Polygonal mesh</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beirão da Veiga, L.</creatorcontrib><creatorcontrib>Gyrya, V.</creatorcontrib><creatorcontrib>Lipnikov, K.</creatorcontrib><creatorcontrib>Manzini, G.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beirão da Veiga, L.</au><au>Gyrya, V.</au><au>Lipnikov, K.</au><au>Manzini, G.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mimetic finite difference method for the Stokes problem on polygonal meshes</atitle><jtitle>Journal of computational physics</jtitle><date>2009-10-20</date><risdate>2009</risdate><volume>228</volume><issue>19</issue><spage>7215</spage><epage>7232</epage><pages>7215-7232</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>Various approaches to extend finite element methods to non-traditional elements (general polygons, pyramids, polyhedra, etc.) have been developed over the last decade. The construction of basis functions for such elements is a challenging task and may require extensive geometrical analysis. The mimetic finite difference (MFD) method works on general polygonal meshes and has many similarities with low-order finite element methods. Both schemes try to preserve the fundamental properties of the underlying physical and mathematical models. The essential difference between the two schemes is that the MFD method uses only the surface representation of discrete unknowns to build the stiffness and mass matrices. Since no extension of basis functions inside the mesh elements is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we present a new MFD method for the Stokes problem on arbitrary polygonal meshes and analyze its stability. The method is developed for the general case of tensor coefficients, which allows us to apply it to a linear elasticity problem, as well. Numerical experiments show, for the velocity variable, second-order convergence in a discrete
L
2
norm and first-order convergence in a discrete
H
1
norm. For the pressure variable, first-order convergence is shown in the
L
2
norm.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2009.06.034</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2009-10, Vol.228 (19), p.7215-7232 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_osti_scitechconnect_956391 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Computational techniques CONVERGENCE ELASTICITY Exact sciences and technology FINITE DIFFERENCE METHOD FINITE ELEMENT METHOD FLEXIBILITY GENERAL AND MISCELLANEOUS GEOMETRY IMPLEMENTATION Incompressible Stokes equations Mathematical methods in physics MATHEMATICAL MODELS MATRICES Mimetic discretization Physics Polygonal mesh VELOCITY |
title | Mimetic finite difference method for the Stokes problem on polygonal meshes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T14%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mimetic%20finite%20difference%20method%20for%20the%20Stokes%20problem%20on%20polygonal%20meshes&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Beir%C3%A3o%20da%20Veiga,%20L.&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2009-10-20&rft.volume=228&rft.issue=19&rft.spage=7215&rft.epage=7232&rft.pages=7215-7232&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2009.06.034&rft_dat=%3Celsevier_osti_%3ES002199910900343X%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S002199910900343X&rfr_iscdi=true |