Mechanisms of impedance rise in high-power, lithium-ion cells

Cells were life-cycled cells using profiles with a 3, 6, or 9% change in state of charge (ΔSOC) at 40, 50, 60, and 70 °C. From the voltage response of the cells to the life-cycle profile at each temperature, we separated the overall impedance rise into two simpler terms, R o (ohmic) and R p (polariz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2002-09, Vol.111 (1), p.152-159
Hauptverfasser: Bloom, Ira, Jones, Scott A., Polzin, Edward G., Battaglia, Vincent S., Henriksen, Gary L., Motloch, Chester G., Wright, Randy B., Jungst, Rudolph G., Case, Herbert L., Doughty, Daniel H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 1
container_start_page 152
container_title Journal of power sources
container_volume 111
creator Bloom, Ira
Jones, Scott A.
Polzin, Edward G.
Battaglia, Vincent S.
Henriksen, Gary L.
Motloch, Chester G.
Wright, Randy B.
Jungst, Rudolph G.
Case, Herbert L.
Doughty, Daniel H.
description Cells were life-cycled cells using profiles with a 3, 6, or 9% change in state of charge (ΔSOC) at 40, 50, 60, and 70 °C. From the voltage response of the cells to the life-cycle profile at each temperature, we separated the overall impedance rise into two simpler terms, R o (ohmic) and R p (polarization), using an equivalent circuit model. The R o data tend to follow the expected trends (40>50>60>70 °C). Although the R p data trends show that R p can either decrease or increase asymptotically with time, the overall temperature-dependent behavior is similar to that of R o. We illustrate the types of processes that can occur in one lithium-ion cell chemistry. Based on the initial rates, the processes are complex. The R o term dominates the observable cell impedance, but R p adds a non-trivial contribution.
doi_str_mv 10.1016/S0378-7753(02)00302-6
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_949694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775302003026</els_id><sourcerecordid>27215043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-4c59f284e4811828c62ac2c6d698618bd3d72898347612b0ae45ad4be8a6b1b73</originalsourceid><addsrcrecordid>eNqFkE1v1DAURS0EEsPAT0BKF1RUquH5I7azqBCq2oLUqgtgbTnOS8coiVM7A-LfN5lU7ZLV25z77tUh5D2DTwyY-vwDhDZU61J8BH4CIIBT9YJsmNGCcl2WL8nmCXlN3uT8GwAY07AhZzfod24Iuc9FbIvQj9i4wWORQsYiDMUu3O3oGP9iOi26MO3CvqchDoXHrstvyavWdRnfPd4t-XV58fP8G72-vfp-_vWaelHJiUpfVi03EqVhzHDjFXeee9Woyihm6kY0mpvKCKkV4zU4lKVrZI3GqZrVWmzJ0fo35inY7MM0r_ZxGNBPtpKVquTMHK_MmOL9HvNk-5CXlW7AuM-Wa85KkGIGyxX0KeacsLVjCr1L_ywDuwi1B6F2sWWB24NQq-bch8cCl73r2jR7Cvk5LBWAEXzmvqwczkb-BEzLYJydNiEte5sY_tP0AJR8iAk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27215043</pqid></control><display><type>article</type><title>Mechanisms of impedance rise in high-power, lithium-ion cells</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bloom, Ira ; Jones, Scott A. ; Polzin, Edward G. ; Battaglia, Vincent S. ; Henriksen, Gary L. ; Motloch, Chester G. ; Wright, Randy B. ; Jungst, Rudolph G. ; Case, Herbert L. ; Doughty, Daniel H.</creator><creatorcontrib>Bloom, Ira ; Jones, Scott A. ; Polzin, Edward G. ; Battaglia, Vincent S. ; Henriksen, Gary L. ; Motloch, Chester G. ; Wright, Randy B. ; Jungst, Rudolph G. ; Case, Herbert L. ; Doughty, Daniel H. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Cells were life-cycled cells using profiles with a 3, 6, or 9% change in state of charge (ΔSOC) at 40, 50, 60, and 70 °C. From the voltage response of the cells to the life-cycle profile at each temperature, we separated the overall impedance rise into two simpler terms, R o (ohmic) and R p (polarization), using an equivalent circuit model. The R o data tend to follow the expected trends (40&gt;50&gt;60&gt;70 °C). Although the R p data trends show that R p can either decrease or increase asymptotically with time, the overall temperature-dependent behavior is similar to that of R o. We illustrate the types of processes that can occur in one lithium-ion cell chemistry. Based on the initial rates, the processes are complex. The R o term dominates the observable cell impedance, but R p adds a non-trivial contribution.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/S0378-7753(02)00302-6</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; CHEMISTRY ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; ENERGY STORAGE ; EQUIVALENT CIRCUITS ; Exact sciences and technology ; High-power ; IMPEDANCE ; LIFE CYCLE ; Lithium-ion ; POLARIZATION</subject><ispartof>Journal of power sources, 2002-09, Vol.111 (1), p.152-159</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-4c59f284e4811828c62ac2c6d698618bd3d72898347612b0ae45ad4be8a6b1b73</citedby><cites>FETCH-LOGICAL-c394t-4c59f284e4811828c62ac2c6d698618bd3d72898347612b0ae45ad4be8a6b1b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775302003026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14600832$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/949694$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bloom, Ira</creatorcontrib><creatorcontrib>Jones, Scott A.</creatorcontrib><creatorcontrib>Polzin, Edward G.</creatorcontrib><creatorcontrib>Battaglia, Vincent S.</creatorcontrib><creatorcontrib>Henriksen, Gary L.</creatorcontrib><creatorcontrib>Motloch, Chester G.</creatorcontrib><creatorcontrib>Wright, Randy B.</creatorcontrib><creatorcontrib>Jungst, Rudolph G.</creatorcontrib><creatorcontrib>Case, Herbert L.</creatorcontrib><creatorcontrib>Doughty, Daniel H.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Mechanisms of impedance rise in high-power, lithium-ion cells</title><title>Journal of power sources</title><description>Cells were life-cycled cells using profiles with a 3, 6, or 9% change in state of charge (ΔSOC) at 40, 50, 60, and 70 °C. From the voltage response of the cells to the life-cycle profile at each temperature, we separated the overall impedance rise into two simpler terms, R o (ohmic) and R p (polarization), using an equivalent circuit model. The R o data tend to follow the expected trends (40&gt;50&gt;60&gt;70 °C). Although the R p data trends show that R p can either decrease or increase asymptotically with time, the overall temperature-dependent behavior is similar to that of R o. We illustrate the types of processes that can occur in one lithium-ion cell chemistry. Based on the initial rates, the processes are complex. The R o term dominates the observable cell impedance, but R p adds a non-trivial contribution.</description><subject>Applied sciences</subject><subject>CHEMISTRY</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>ENERGY STORAGE</subject><subject>EQUIVALENT CIRCUITS</subject><subject>Exact sciences and technology</subject><subject>High-power</subject><subject>IMPEDANCE</subject><subject>LIFE CYCLE</subject><subject>Lithium-ion</subject><subject>POLARIZATION</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAURS0EEsPAT0BKF1RUquH5I7azqBCq2oLUqgtgbTnOS8coiVM7A-LfN5lU7ZLV25z77tUh5D2DTwyY-vwDhDZU61J8BH4CIIBT9YJsmNGCcl2WL8nmCXlN3uT8GwAY07AhZzfod24Iuc9FbIvQj9i4wWORQsYiDMUu3O3oGP9iOi26MO3CvqchDoXHrstvyavWdRnfPd4t-XV58fP8G72-vfp-_vWaelHJiUpfVi03EqVhzHDjFXeee9Woyihm6kY0mpvKCKkV4zU4lKVrZI3GqZrVWmzJ0fo35inY7MM0r_ZxGNBPtpKVquTMHK_MmOL9HvNk-5CXlW7AuM-Wa85KkGIGyxX0KeacsLVjCr1L_ywDuwi1B6F2sWWB24NQq-bch8cCl73r2jR7Cvk5LBWAEXzmvqwczkb-BEzLYJydNiEte5sY_tP0AJR8iAk</recordid><startdate>20020918</startdate><enddate>20020918</enddate><creator>Bloom, Ira</creator><creator>Jones, Scott A.</creator><creator>Polzin, Edward G.</creator><creator>Battaglia, Vincent S.</creator><creator>Henriksen, Gary L.</creator><creator>Motloch, Chester G.</creator><creator>Wright, Randy B.</creator><creator>Jungst, Rudolph G.</creator><creator>Case, Herbert L.</creator><creator>Doughty, Daniel H.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20020918</creationdate><title>Mechanisms of impedance rise in high-power, lithium-ion cells</title><author>Bloom, Ira ; Jones, Scott A. ; Polzin, Edward G. ; Battaglia, Vincent S. ; Henriksen, Gary L. ; Motloch, Chester G. ; Wright, Randy B. ; Jungst, Rudolph G. ; Case, Herbert L. ; Doughty, Daniel H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-4c59f284e4811828c62ac2c6d698618bd3d72898347612b0ae45ad4be8a6b1b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>CHEMISTRY</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>ENERGY STORAGE</topic><topic>EQUIVALENT CIRCUITS</topic><topic>Exact sciences and technology</topic><topic>High-power</topic><topic>IMPEDANCE</topic><topic>LIFE CYCLE</topic><topic>Lithium-ion</topic><topic>POLARIZATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bloom, Ira</creatorcontrib><creatorcontrib>Jones, Scott A.</creatorcontrib><creatorcontrib>Polzin, Edward G.</creatorcontrib><creatorcontrib>Battaglia, Vincent S.</creatorcontrib><creatorcontrib>Henriksen, Gary L.</creatorcontrib><creatorcontrib>Motloch, Chester G.</creatorcontrib><creatorcontrib>Wright, Randy B.</creatorcontrib><creatorcontrib>Jungst, Rudolph G.</creatorcontrib><creatorcontrib>Case, Herbert L.</creatorcontrib><creatorcontrib>Doughty, Daniel H.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bloom, Ira</au><au>Jones, Scott A.</au><au>Polzin, Edward G.</au><au>Battaglia, Vincent S.</au><au>Henriksen, Gary L.</au><au>Motloch, Chester G.</au><au>Wright, Randy B.</au><au>Jungst, Rudolph G.</au><au>Case, Herbert L.</au><au>Doughty, Daniel H.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of impedance rise in high-power, lithium-ion cells</atitle><jtitle>Journal of power sources</jtitle><date>2002-09-18</date><risdate>2002</risdate><volume>111</volume><issue>1</issue><spage>152</spage><epage>159</epage><pages>152-159</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Cells were life-cycled cells using profiles with a 3, 6, or 9% change in state of charge (ΔSOC) at 40, 50, 60, and 70 °C. From the voltage response of the cells to the life-cycle profile at each temperature, we separated the overall impedance rise into two simpler terms, R o (ohmic) and R p (polarization), using an equivalent circuit model. The R o data tend to follow the expected trends (40&gt;50&gt;60&gt;70 °C). Although the R p data trends show that R p can either decrease or increase asymptotically with time, the overall temperature-dependent behavior is similar to that of R o. We illustrate the types of processes that can occur in one lithium-ion cell chemistry. Based on the initial rates, the processes are complex. The R o term dominates the observable cell impedance, but R p adds a non-trivial contribution.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/S0378-7753(02)00302-6</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2002-09, Vol.111 (1), p.152-159
issn 0378-7753
1873-2755
language eng
recordid cdi_osti_scitechconnect_949694
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
CHEMISTRY
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
ENERGY STORAGE
EQUIVALENT CIRCUITS
Exact sciences and technology
High-power
IMPEDANCE
LIFE CYCLE
Lithium-ion
POLARIZATION
title Mechanisms of impedance rise in high-power, lithium-ion cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20impedance%20rise%20in%20high-power,%20lithium-ion%20cells&rft.jtitle=Journal%20of%20power%20sources&rft.au=Bloom,%20Ira&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2002-09-18&rft.volume=111&rft.issue=1&rft.spage=152&rft.epage=159&rft.pages=152-159&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/S0378-7753(02)00302-6&rft_dat=%3Cproquest_osti_%3E27215043%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27215043&rft_id=info:pmid/&rft_els_id=S0378775302003026&rfr_iscdi=true