Mechanism of Thermal Transport in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation
We present results of molecular‐dynamics simulations of the thermal conductivity, κ, of ZrO2 and Y2O3‐stabilized ZrO2 (YSZ). For both pure ZrO2 and YSZ with low concentrations of Y2O3, we find that the high‐temperature κ is typical of a crystalline solid, with the dominant mechanism being phonon‐pho...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2001-12, Vol.84 (12), p.2997-3007 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3007 |
---|---|
container_issue | 12 |
container_start_page | 2997 |
container_title | Journal of the American Ceramic Society |
container_volume | 84 |
creator | Schelling, Patrick K. Phillpot, Simon R. |
description | We present results of molecular‐dynamics simulations of the thermal conductivity, κ, of ZrO2 and Y2O3‐stabilized ZrO2 (YSZ). For both pure ZrO2 and YSZ with low concentrations of Y2O3, we find that the high‐temperature κ is typical of a crystalline solid, with the dominant mechanism being phonon‐phonon scattering. With increasing Y2O3 concentration, however, the mechanism changes to one more typical of an amorphous system. In particular, phononlike vibrational modes with well‐defined wave vectors appear only at very low frequencies. As in amorphous materials, the vast majority of vibrational modes, while delocalized, do not propagate like ordinary phonon modes but transport energy in a diffusive manner. We also find that the few highest frequency modes are localized and do not contribute to κ. |
doi_str_mv | 10.1111/j.1151-2916.2001.tb01127.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_943193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>98442036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5367-35131108f77fb85bef535251336cf5a6292059bec29f6cab843a1237888516923</originalsourceid><addsrcrecordid>eNqVkV1v0zAUhi0EEqXwH8IkuEvnj9iOuWIq2xjaoFKLEL2xHM_RHBK72K5o-fU4SsUk7rBkHfn48XuOzwvAGYILlNd5lwNFJRaILTCEaJEaiBDmi8MTMEP0dPUUzCCEuOQ1hs_Bixi7fESirmaguzP6QTkbh8K3xebBhEH1xSYoF3c-pMK6YmuD9s6qQrn74ntKwapynVRje_vb3D9eN8fizvdG73sVyg9HpwarY7G2Q04k691L8KxVfTSvTnEOvl5dbpYfy9sv1zfLi9tSU8J4SSgiCMG65bxtatqYlhKKc5Iw3VLFsMCQisZoLFqmVVNXRCFMeF3XFDGByRy8nnR9TFZGbVP-Ym7RGZ2kqAgSJDNvJ2YX_M-9iUkONmrT98oZv48SMy4qjlgGz_4BO78PLvcvMeJ5thzzDL2bIB18jMG0chfsoMJRIihHn2QnR5_kaIYcfZInn-QhP35zqqCiVn2bR69tfFQgtCIs7zl4P3G_bG-O_1FBfrpYXmIhxj7LScLGZA5_JVT4IRknnMpvn6_lenO12q63K7kifwC3CLYH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217916727</pqid></control><display><type>article</type><title>Mechanism of Thermal Transport in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schelling, Patrick K. ; Phillpot, Simon R.</creator><creatorcontrib>Schelling, Patrick K. ; Phillpot, Simon R. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We present results of molecular‐dynamics simulations of the thermal conductivity, κ, of ZrO2 and Y2O3‐stabilized ZrO2 (YSZ). For both pure ZrO2 and YSZ with low concentrations of Y2O3, we find that the high‐temperature κ is typical of a crystalline solid, with the dominant mechanism being phonon‐phonon scattering. With increasing Y2O3 concentration, however, the mechanism changes to one more typical of an amorphous system. In particular, phononlike vibrational modes with well‐defined wave vectors appear only at very low frequencies. As in amorphous materials, the vast majority of vibrational modes, while delocalized, do not propagate like ordinary phonon modes but transport energy in a diffusive manner. We also find that the few highest frequency modes are localized and do not contribute to κ.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.2001.tb01127.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Westerville, Ohio: American Ceramics Society</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; MOLECULAR DYNAMICS METHOD ; Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves ; PHONONS ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; SCATTERING ; SIMULATION ; THERMAL CONDUCTIVITY ; thermal properties ; Transport properties of condensed matter (nonelectronic) ; VECTORS ; YTTRIUM COMPOUNDS ; zirconia ; zirconia: yttria stabilized ; ZIRCONIUM COMPOUNDS</subject><ispartof>Journal of the American Ceramic Society, 2001-12, Vol.84 (12), p.2997-3007</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright American Ceramic Society Dec 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5367-35131108f77fb85bef535251336cf5a6292059bec29f6cab843a1237888516923</citedby><cites>FETCH-LOGICAL-c5367-35131108f77fb85bef535251336cf5a6292059bec29f6cab843a1237888516923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.2001.tb01127.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.2001.tb01127.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13543654$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/943193$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schelling, Patrick K.</creatorcontrib><creatorcontrib>Phillpot, Simon R.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Mechanism of Thermal Transport in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation</title><title>Journal of the American Ceramic Society</title><description>We present results of molecular‐dynamics simulations of the thermal conductivity, κ, of ZrO2 and Y2O3‐stabilized ZrO2 (YSZ). For both pure ZrO2 and YSZ with low concentrations of Y2O3, we find that the high‐temperature κ is typical of a crystalline solid, with the dominant mechanism being phonon‐phonon scattering. With increasing Y2O3 concentration, however, the mechanism changes to one more typical of an amorphous system. In particular, phononlike vibrational modes with well‐defined wave vectors appear only at very low frequencies. As in amorphous materials, the vast majority of vibrational modes, while delocalized, do not propagate like ordinary phonon modes but transport energy in a diffusive manner. We also find that the few highest frequency modes are localized and do not contribute to κ.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves</subject><subject>PHONONS</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>SCATTERING</subject><subject>SIMULATION</subject><subject>THERMAL CONDUCTIVITY</subject><subject>thermal properties</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><subject>VECTORS</subject><subject>YTTRIUM COMPOUNDS</subject><subject>zirconia</subject><subject>zirconia: yttria stabilized</subject><subject>ZIRCONIUM COMPOUNDS</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqVkV1v0zAUhi0EEqXwH8IkuEvnj9iOuWIq2xjaoFKLEL2xHM_RHBK72K5o-fU4SsUk7rBkHfn48XuOzwvAGYILlNd5lwNFJRaILTCEaJEaiBDmi8MTMEP0dPUUzCCEuOQ1hs_Bixi7fESirmaguzP6QTkbh8K3xebBhEH1xSYoF3c-pMK6YmuD9s6qQrn74ntKwapynVRje_vb3D9eN8fizvdG73sVyg9HpwarY7G2Q04k691L8KxVfTSvTnEOvl5dbpYfy9sv1zfLi9tSU8J4SSgiCMG65bxtatqYlhKKc5Iw3VLFsMCQisZoLFqmVVNXRCFMeF3XFDGByRy8nnR9TFZGbVP-Ym7RGZ2kqAgSJDNvJ2YX_M-9iUkONmrT98oZv48SMy4qjlgGz_4BO78PLvcvMeJ5thzzDL2bIB18jMG0chfsoMJRIihHn2QnR5_kaIYcfZInn-QhP35zqqCiVn2bR69tfFQgtCIs7zl4P3G_bG-O_1FBfrpYXmIhxj7LScLGZA5_JVT4IRknnMpvn6_lenO12q63K7kifwC3CLYH</recordid><startdate>200112</startdate><enddate>200112</enddate><creator>Schelling, Patrick K.</creator><creator>Phillpot, Simon R.</creator><general>American Ceramics Society</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>200112</creationdate><title>Mechanism of Thermal Transport in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation</title><author>Schelling, Patrick K. ; Phillpot, Simon R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5367-35131108f77fb85bef535251336cf5a6292059bec29f6cab843a1237888516923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves</topic><topic>PHONONS</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>SCATTERING</topic><topic>SIMULATION</topic><topic>THERMAL CONDUCTIVITY</topic><topic>thermal properties</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><topic>VECTORS</topic><topic>YTTRIUM COMPOUNDS</topic><topic>zirconia</topic><topic>zirconia: yttria stabilized</topic><topic>ZIRCONIUM COMPOUNDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schelling, Patrick K.</creatorcontrib><creatorcontrib>Phillpot, Simon R.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schelling, Patrick K.</au><au>Phillpot, Simon R.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Thermal Transport in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2001-12</date><risdate>2001</risdate><volume>84</volume><issue>12</issue><spage>2997</spage><epage>3007</epage><pages>2997-3007</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>We present results of molecular‐dynamics simulations of the thermal conductivity, κ, of ZrO2 and Y2O3‐stabilized ZrO2 (YSZ). For both pure ZrO2 and YSZ with low concentrations of Y2O3, we find that the high‐temperature κ is typical of a crystalline solid, with the dominant mechanism being phonon‐phonon scattering. With increasing Y2O3 concentration, however, the mechanism changes to one more typical of an amorphous system. In particular, phononlike vibrational modes with well‐defined wave vectors appear only at very low frequencies. As in amorphous materials, the vast majority of vibrational modes, while delocalized, do not propagate like ordinary phonon modes but transport energy in a diffusive manner. We also find that the few highest frequency modes are localized and do not contribute to κ.</abstract><cop>Westerville, Ohio</cop><pub>American Ceramics Society</pub><doi>10.1111/j.1151-2916.2001.tb01127.x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2001-12, Vol.84 (12), p.2997-3007 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_osti_scitechconnect_943193 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Condensed matter: structure, mechanical and thermal properties Exact sciences and technology MOLECULAR DYNAMICS METHOD Nonelectronic thermal conduction and heat-pulse propagation in solids thermal waves PHONONS Physics PHYSICS OF ELEMENTARY PARTICLES AND FIELDS SCATTERING SIMULATION THERMAL CONDUCTIVITY thermal properties Transport properties of condensed matter (nonelectronic) VECTORS YTTRIUM COMPOUNDS zirconia zirconia: yttria stabilized ZIRCONIUM COMPOUNDS |
title | Mechanism of Thermal Transport in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Thermal%20Transport%20in%20Zirconia%20and%20Yttria-Stabilized%20Zirconia%20by%20Molecular-Dynamics%20Simulation&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Schelling,%20Patrick%20K.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2001-12&rft.volume=84&rft.issue=12&rft.spage=2997&rft.epage=3007&rft.pages=2997-3007&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.2001.tb01127.x&rft_dat=%3Cproquest_osti_%3E98442036%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217916727&rft_id=info:pmid/&rfr_iscdi=true |