Mechanism of Thermal Transport in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation

We present results of molecular‐dynamics simulations of the thermal conductivity, κ, of ZrO2 and Y2O3‐stabilized ZrO2 (YSZ). For both pure ZrO2 and YSZ with low concentrations of Y2O3, we find that the high‐temperature κ is typical of a crystalline solid, with the dominant mechanism being phonon‐pho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2001-12, Vol.84 (12), p.2997-3007
Hauptverfasser: Schelling, Patrick K., Phillpot, Simon R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3007
container_issue 12
container_start_page 2997
container_title Journal of the American Ceramic Society
container_volume 84
creator Schelling, Patrick K.
Phillpot, Simon R.
description We present results of molecular‐dynamics simulations of the thermal conductivity, κ, of ZrO2 and Y2O3‐stabilized ZrO2 (YSZ). For both pure ZrO2 and YSZ with low concentrations of Y2O3, we find that the high‐temperature κ is typical of a crystalline solid, with the dominant mechanism being phonon‐phonon scattering. With increasing Y2O3 concentration, however, the mechanism changes to one more typical of an amorphous system. In particular, phononlike vibrational modes with well‐defined wave vectors appear only at very low frequencies. As in amorphous materials, the vast majority of vibrational modes, while delocalized, do not propagate like ordinary phonon modes but transport energy in a diffusive manner. We also find that the few highest frequency modes are localized and do not contribute to κ.
doi_str_mv 10.1111/j.1151-2916.2001.tb01127.x
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_943193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>98442036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5367-35131108f77fb85bef535251336cf5a6292059bec29f6cab843a1237888516923</originalsourceid><addsrcrecordid>eNqVkV1v0zAUhi0EEqXwH8IkuEvnj9iOuWIq2xjaoFKLEL2xHM_RHBK72K5o-fU4SsUk7rBkHfn48XuOzwvAGYILlNd5lwNFJRaILTCEaJEaiBDmi8MTMEP0dPUUzCCEuOQ1hs_Bixi7fESirmaguzP6QTkbh8K3xebBhEH1xSYoF3c-pMK6YmuD9s6qQrn74ntKwapynVRje_vb3D9eN8fizvdG73sVyg9HpwarY7G2Q04k691L8KxVfTSvTnEOvl5dbpYfy9sv1zfLi9tSU8J4SSgiCMG65bxtatqYlhKKc5Iw3VLFsMCQisZoLFqmVVNXRCFMeF3XFDGByRy8nnR9TFZGbVP-Ym7RGZ2kqAgSJDNvJ2YX_M-9iUkONmrT98oZv48SMy4qjlgGz_4BO78PLvcvMeJ5thzzDL2bIB18jMG0chfsoMJRIihHn2QnR5_kaIYcfZInn-QhP35zqqCiVn2bR69tfFQgtCIs7zl4P3G_bG-O_1FBfrpYXmIhxj7LScLGZA5_JVT4IRknnMpvn6_lenO12q63K7kifwC3CLYH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217916727</pqid></control><display><type>article</type><title>Mechanism of Thermal Transport in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schelling, Patrick K. ; Phillpot, Simon R.</creator><creatorcontrib>Schelling, Patrick K. ; Phillpot, Simon R. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We present results of molecular‐dynamics simulations of the thermal conductivity, κ, of ZrO2 and Y2O3‐stabilized ZrO2 (YSZ). For both pure ZrO2 and YSZ with low concentrations of Y2O3, we find that the high‐temperature κ is typical of a crystalline solid, with the dominant mechanism being phonon‐phonon scattering. With increasing Y2O3 concentration, however, the mechanism changes to one more typical of an amorphous system. In particular, phononlike vibrational modes with well‐defined wave vectors appear only at very low frequencies. As in amorphous materials, the vast majority of vibrational modes, while delocalized, do not propagate like ordinary phonon modes but transport energy in a diffusive manner. We also find that the few highest frequency modes are localized and do not contribute to κ.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.2001.tb01127.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Westerville, Ohio: American Ceramics Society</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; MOLECULAR DYNAMICS METHOD ; Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves ; PHONONS ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; SCATTERING ; SIMULATION ; THERMAL CONDUCTIVITY ; thermal properties ; Transport properties of condensed matter (nonelectronic) ; VECTORS ; YTTRIUM COMPOUNDS ; zirconia ; zirconia: yttria stabilized ; ZIRCONIUM COMPOUNDS</subject><ispartof>Journal of the American Ceramic Society, 2001-12, Vol.84 (12), p.2997-3007</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright American Ceramic Society Dec 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5367-35131108f77fb85bef535251336cf5a6292059bec29f6cab843a1237888516923</citedby><cites>FETCH-LOGICAL-c5367-35131108f77fb85bef535251336cf5a6292059bec29f6cab843a1237888516923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.2001.tb01127.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.2001.tb01127.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13543654$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/943193$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schelling, Patrick K.</creatorcontrib><creatorcontrib>Phillpot, Simon R.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Mechanism of Thermal Transport in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation</title><title>Journal of the American Ceramic Society</title><description>We present results of molecular‐dynamics simulations of the thermal conductivity, κ, of ZrO2 and Y2O3‐stabilized ZrO2 (YSZ). For both pure ZrO2 and YSZ with low concentrations of Y2O3, we find that the high‐temperature κ is typical of a crystalline solid, with the dominant mechanism being phonon‐phonon scattering. With increasing Y2O3 concentration, however, the mechanism changes to one more typical of an amorphous system. In particular, phononlike vibrational modes with well‐defined wave vectors appear only at very low frequencies. As in amorphous materials, the vast majority of vibrational modes, while delocalized, do not propagate like ordinary phonon modes but transport energy in a diffusive manner. We also find that the few highest frequency modes are localized and do not contribute to κ.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves</subject><subject>PHONONS</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>SCATTERING</subject><subject>SIMULATION</subject><subject>THERMAL CONDUCTIVITY</subject><subject>thermal properties</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><subject>VECTORS</subject><subject>YTTRIUM COMPOUNDS</subject><subject>zirconia</subject><subject>zirconia: yttria stabilized</subject><subject>ZIRCONIUM COMPOUNDS</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqVkV1v0zAUhi0EEqXwH8IkuEvnj9iOuWIq2xjaoFKLEL2xHM_RHBK72K5o-fU4SsUk7rBkHfn48XuOzwvAGYILlNd5lwNFJRaILTCEaJEaiBDmi8MTMEP0dPUUzCCEuOQ1hs_Bixi7fESirmaguzP6QTkbh8K3xebBhEH1xSYoF3c-pMK6YmuD9s6qQrn74ntKwapynVRje_vb3D9eN8fizvdG73sVyg9HpwarY7G2Q04k691L8KxVfTSvTnEOvl5dbpYfy9sv1zfLi9tSU8J4SSgiCMG65bxtatqYlhKKc5Iw3VLFsMCQisZoLFqmVVNXRCFMeF3XFDGByRy8nnR9TFZGbVP-Ym7RGZ2kqAgSJDNvJ2YX_M-9iUkONmrT98oZv48SMy4qjlgGz_4BO78PLvcvMeJ5thzzDL2bIB18jMG0chfsoMJRIihHn2QnR5_kaIYcfZInn-QhP35zqqCiVn2bR69tfFQgtCIs7zl4P3G_bG-O_1FBfrpYXmIhxj7LScLGZA5_JVT4IRknnMpvn6_lenO12q63K7kifwC3CLYH</recordid><startdate>200112</startdate><enddate>200112</enddate><creator>Schelling, Patrick K.</creator><creator>Phillpot, Simon R.</creator><general>American Ceramics Society</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>200112</creationdate><title>Mechanism of Thermal Transport in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation</title><author>Schelling, Patrick K. ; Phillpot, Simon R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5367-35131108f77fb85bef535251336cf5a6292059bec29f6cab843a1237888516923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves</topic><topic>PHONONS</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>SCATTERING</topic><topic>SIMULATION</topic><topic>THERMAL CONDUCTIVITY</topic><topic>thermal properties</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><topic>VECTORS</topic><topic>YTTRIUM COMPOUNDS</topic><topic>zirconia</topic><topic>zirconia: yttria stabilized</topic><topic>ZIRCONIUM COMPOUNDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schelling, Patrick K.</creatorcontrib><creatorcontrib>Phillpot, Simon R.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schelling, Patrick K.</au><au>Phillpot, Simon R.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Thermal Transport in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2001-12</date><risdate>2001</risdate><volume>84</volume><issue>12</issue><spage>2997</spage><epage>3007</epage><pages>2997-3007</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>We present results of molecular‐dynamics simulations of the thermal conductivity, κ, of ZrO2 and Y2O3‐stabilized ZrO2 (YSZ). For both pure ZrO2 and YSZ with low concentrations of Y2O3, we find that the high‐temperature κ is typical of a crystalline solid, with the dominant mechanism being phonon‐phonon scattering. With increasing Y2O3 concentration, however, the mechanism changes to one more typical of an amorphous system. In particular, phononlike vibrational modes with well‐defined wave vectors appear only at very low frequencies. As in amorphous materials, the vast majority of vibrational modes, while delocalized, do not propagate like ordinary phonon modes but transport energy in a diffusive manner. We also find that the few highest frequency modes are localized and do not contribute to κ.</abstract><cop>Westerville, Ohio</cop><pub>American Ceramics Society</pub><doi>10.1111/j.1151-2916.2001.tb01127.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2001-12, Vol.84 (12), p.2997-3007
issn 0002-7820
1551-2916
language eng
recordid cdi_osti_scitechconnect_943193
source Wiley Online Library Journals Frontfile Complete
subjects Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
MOLECULAR DYNAMICS METHOD
Nonelectronic thermal conduction and heat-pulse propagation in solids
thermal waves
PHONONS
Physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
SCATTERING
SIMULATION
THERMAL CONDUCTIVITY
thermal properties
Transport properties of condensed matter (nonelectronic)
VECTORS
YTTRIUM COMPOUNDS
zirconia
zirconia: yttria stabilized
ZIRCONIUM COMPOUNDS
title Mechanism of Thermal Transport in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Thermal%20Transport%20in%20Zirconia%20and%20Yttria-Stabilized%20Zirconia%20by%20Molecular-Dynamics%20Simulation&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Schelling,%20Patrick%20K.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2001-12&rft.volume=84&rft.issue=12&rft.spage=2997&rft.epage=3007&rft.pages=2997-3007&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.2001.tb01127.x&rft_dat=%3Cproquest_osti_%3E98442036%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217916727&rft_id=info:pmid/&rfr_iscdi=true