Molecular Dynamics of Ionic Transport and Electrokinetic Effects in Realistic Silica Channels

Silica is one of the most widely used inorganic materials in experiments and applications involving aqueous solutions of biomolecules, nanoparticles, etc. In this paper, we construct a detailed atomistic model of a silica interface that captures the essential experimentally known properties of a sil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2008-07, Vol.112 (27), p.10222-10232
Hauptverfasser: Lorenz, Christian D, Crozier, Paul S, Anderson, Joshua A, Travesset, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10232
container_issue 27
container_start_page 10222
container_title Journal of physical chemistry. C
container_volume 112
creator Lorenz, Christian D
Crozier, Paul S
Anderson, Joshua A
Travesset, Alex
description Silica is one of the most widely used inorganic materials in experiments and applications involving aqueous solutions of biomolecules, nanoparticles, etc. In this paper, we construct a detailed atomistic model of a silica interface that captures the essential experimentally known properties of a silica interface. We then perform all-atom molecular dynamics simulations of a silica nanochannel subjected to either an external pressure or an electric field and provide an atomistic description of ionic transport and both electro-osmotic flow and streaming currents for a solution of monovalent (0.4 M NaCl) as well as divalent (0.2 and 1.0 M CaCl 2) salts. Our results allow a detailed investigation of ζ-potentials, Stern layer conductance, charge inversion, ionic mobilities, as well as continuum theories and Onsager relations. We conclude with a discussion on the implications of our results for silica nanopore experiments and micro- and nanofluidic devices.
doi_str_mv 10.1021/jp711510k
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_941093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b816250772</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-fc5a0e0a0242135662563ba00f8258a3521ecbe27ba39f094e2a0b48a2eb758e3</originalsourceid><addsrcrecordid>eNptkEtLAzEUhQdRsFYX_oO4cOFiNI_JZGYptbUFi2IrriTciQlNO01KMgX7702pdOXqvj4O59wsuyb4nmBKHpYbQQgneHWS9UjNaC4Kzk-PfSHOs4sYlxhzhgnrZV9T32q1bSGgp52DtVUReYMm3lmF5gFc3PjQIXDfaJjALviVdbpLx6ExaY7IOvSuobVxv5zZ1ipAgwU4p9t4mZ0ZaKO--qv97GM0nA_G-cvr82Tw-JIDq-ouN4oD1hgwLShhvCwpL1kDGJuK8goYp0SrRlPRAKsNrgtNATdFBVQ3glea9bObg65PLmRUttNqoXzyoDpZFwTXLDF3B0YFH2PQRm6CXUPYSYLl_nfy-LvE5gc2pdI_RxDCSpaCCS7nbzM5mo5H7FPUkif-9sCDinLpt8GltP_o_gJ-uHxj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Dynamics of Ionic Transport and Electrokinetic Effects in Realistic Silica Channels</title><source>ACS Publications</source><creator>Lorenz, Christian D ; Crozier, Paul S ; Anderson, Joshua A ; Travesset, Alex</creator><creatorcontrib>Lorenz, Christian D ; Crozier, Paul S ; Anderson, Joshua A ; Travesset, Alex ; Ames Laboratory (AMES), Ames, IA</creatorcontrib><description>Silica is one of the most widely used inorganic materials in experiments and applications involving aqueous solutions of biomolecules, nanoparticles, etc. In this paper, we construct a detailed atomistic model of a silica interface that captures the essential experimentally known properties of a silica interface. We then perform all-atom molecular dynamics simulations of a silica nanochannel subjected to either an external pressure or an electric field and provide an atomistic description of ionic transport and both electro-osmotic flow and streaming currents for a solution of monovalent (0.4 M NaCl) as well as divalent (0.2 and 1.0 M CaCl 2) salts. Our results allow a detailed investigation of ζ-potentials, Stern layer conductance, charge inversion, ionic mobilities, as well as continuum theories and Onsager relations. We conclude with a discussion on the implications of our results for silica nanopore experiments and micro- and nanofluidic devices.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp711510k</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>AQUEOUS SOLUTIONS ; C: Surfaces, Interfaces, Catalysis ; ELECTRIC FIELDS ; ELECTRODYNAMICS ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; ONSAGER RELATIONS ; SILICA ; TRANSPORT</subject><ispartof>Journal of physical chemistry. C, 2008-07, Vol.112 (27), p.10222-10232</ispartof><rights>Copyright © 2008 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-fc5a0e0a0242135662563ba00f8258a3521ecbe27ba39f094e2a0b48a2eb758e3</citedby><cites>FETCH-LOGICAL-a389t-fc5a0e0a0242135662563ba00f8258a3521ecbe27ba39f094e2a0b48a2eb758e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp711510k$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp711510k$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/941093$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lorenz, Christian D</creatorcontrib><creatorcontrib>Crozier, Paul S</creatorcontrib><creatorcontrib>Anderson, Joshua A</creatorcontrib><creatorcontrib>Travesset, Alex</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA</creatorcontrib><title>Molecular Dynamics of Ionic Transport and Electrokinetic Effects in Realistic Silica Channels</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Silica is one of the most widely used inorganic materials in experiments and applications involving aqueous solutions of biomolecules, nanoparticles, etc. In this paper, we construct a detailed atomistic model of a silica interface that captures the essential experimentally known properties of a silica interface. We then perform all-atom molecular dynamics simulations of a silica nanochannel subjected to either an external pressure or an electric field and provide an atomistic description of ionic transport and both electro-osmotic flow and streaming currents for a solution of monovalent (0.4 M NaCl) as well as divalent (0.2 and 1.0 M CaCl 2) salts. Our results allow a detailed investigation of ζ-potentials, Stern layer conductance, charge inversion, ionic mobilities, as well as continuum theories and Onsager relations. We conclude with a discussion on the implications of our results for silica nanopore experiments and micro- and nanofluidic devices.</description><subject>AQUEOUS SOLUTIONS</subject><subject>C: Surfaces, Interfaces, Catalysis</subject><subject>ELECTRIC FIELDS</subject><subject>ELECTRODYNAMICS</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>ONSAGER RELATIONS</subject><subject>SILICA</subject><subject>TRANSPORT</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEUhQdRsFYX_oO4cOFiNI_JZGYptbUFi2IrriTciQlNO01KMgX7702pdOXqvj4O59wsuyb4nmBKHpYbQQgneHWS9UjNaC4Kzk-PfSHOs4sYlxhzhgnrZV9T32q1bSGgp52DtVUReYMm3lmF5gFc3PjQIXDfaJjALviVdbpLx6ExaY7IOvSuobVxv5zZ1ipAgwU4p9t4mZ0ZaKO--qv97GM0nA_G-cvr82Tw-JIDq-ouN4oD1hgwLShhvCwpL1kDGJuK8goYp0SrRlPRAKsNrgtNATdFBVQ3glea9bObg65PLmRUttNqoXzyoDpZFwTXLDF3B0YFH2PQRm6CXUPYSYLl_nfy-LvE5gc2pdI_RxDCSpaCCS7nbzM5mo5H7FPUkif-9sCDinLpt8GltP_o_gJ-uHxj</recordid><startdate>20080710</startdate><enddate>20080710</enddate><creator>Lorenz, Christian D</creator><creator>Crozier, Paul S</creator><creator>Anderson, Joshua A</creator><creator>Travesset, Alex</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20080710</creationdate><title>Molecular Dynamics of Ionic Transport and Electrokinetic Effects in Realistic Silica Channels</title><author>Lorenz, Christian D ; Crozier, Paul S ; Anderson, Joshua A ; Travesset, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-fc5a0e0a0242135662563ba00f8258a3521ecbe27ba39f094e2a0b48a2eb758e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>AQUEOUS SOLUTIONS</topic><topic>C: Surfaces, Interfaces, Catalysis</topic><topic>ELECTRIC FIELDS</topic><topic>ELECTRODYNAMICS</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>ONSAGER RELATIONS</topic><topic>SILICA</topic><topic>TRANSPORT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lorenz, Christian D</creatorcontrib><creatorcontrib>Crozier, Paul S</creatorcontrib><creatorcontrib>Anderson, Joshua A</creatorcontrib><creatorcontrib>Travesset, Alex</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lorenz, Christian D</au><au>Crozier, Paul S</au><au>Anderson, Joshua A</au><au>Travesset, Alex</au><aucorp>Ames Laboratory (AMES), Ames, IA</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics of Ionic Transport and Electrokinetic Effects in Realistic Silica Channels</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2008-07-10</date><risdate>2008</risdate><volume>112</volume><issue>27</issue><spage>10222</spage><epage>10232</epage><pages>10222-10232</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Silica is one of the most widely used inorganic materials in experiments and applications involving aqueous solutions of biomolecules, nanoparticles, etc. In this paper, we construct a detailed atomistic model of a silica interface that captures the essential experimentally known properties of a silica interface. We then perform all-atom molecular dynamics simulations of a silica nanochannel subjected to either an external pressure or an electric field and provide an atomistic description of ionic transport and both electro-osmotic flow and streaming currents for a solution of monovalent (0.4 M NaCl) as well as divalent (0.2 and 1.0 M CaCl 2) salts. Our results allow a detailed investigation of ζ-potentials, Stern layer conductance, charge inversion, ionic mobilities, as well as continuum theories and Onsager relations. We conclude with a discussion on the implications of our results for silica nanopore experiments and micro- and nanofluidic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/jp711510k</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2008-07, Vol.112 (27), p.10222-10232
issn 1932-7447
1932-7455
language eng
recordid cdi_osti_scitechconnect_941093
source ACS Publications
subjects AQUEOUS SOLUTIONS
C: Surfaces, Interfaces, Catalysis
ELECTRIC FIELDS
ELECTRODYNAMICS
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
ONSAGER RELATIONS
SILICA
TRANSPORT
title Molecular Dynamics of Ionic Transport and Electrokinetic Effects in Realistic Silica Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20of%20Ionic%20Transport%20and%20Electrokinetic%20Effects%20in%20Realistic%20Silica%20Channels&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Lorenz,%20Christian%20D&rft.aucorp=Ames%20Laboratory%20(AMES),%20Ames,%20IA&rft.date=2008-07-10&rft.volume=112&rft.issue=27&rft.spage=10222&rft.epage=10232&rft.pages=10222-10232&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp711510k&rft_dat=%3Cacs_osti_%3Eb816250772%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true