Molecular Dynamics of Ionic Transport and Electrokinetic Effects in Realistic Silica Channels
Silica is one of the most widely used inorganic materials in experiments and applications involving aqueous solutions of biomolecules, nanoparticles, etc. In this paper, we construct a detailed atomistic model of a silica interface that captures the essential experimentally known properties of a sil...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2008-07, Vol.112 (27), p.10222-10232 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10232 |
---|---|
container_issue | 27 |
container_start_page | 10222 |
container_title | Journal of physical chemistry. C |
container_volume | 112 |
creator | Lorenz, Christian D Crozier, Paul S Anderson, Joshua A Travesset, Alex |
description | Silica is one of the most widely used inorganic materials in experiments and applications involving aqueous solutions of biomolecules, nanoparticles, etc. In this paper, we construct a detailed atomistic model of a silica interface that captures the essential experimentally known properties of a silica interface. We then perform all-atom molecular dynamics simulations of a silica nanochannel subjected to either an external pressure or an electric field and provide an atomistic description of ionic transport and both electro-osmotic flow and streaming currents for a solution of monovalent (0.4 M NaCl) as well as divalent (0.2 and 1.0 M CaCl 2) salts. Our results allow a detailed investigation of ζ-potentials, Stern layer conductance, charge inversion, ionic mobilities, as well as continuum theories and Onsager relations. We conclude with a discussion on the implications of our results for silica nanopore experiments and micro- and nanofluidic devices. |
doi_str_mv | 10.1021/jp711510k |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_941093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b816250772</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-fc5a0e0a0242135662563ba00f8258a3521ecbe27ba39f094e2a0b48a2eb758e3</originalsourceid><addsrcrecordid>eNptkEtLAzEUhQdRsFYX_oO4cOFiNI_JZGYptbUFi2IrriTciQlNO01KMgX7702pdOXqvj4O59wsuyb4nmBKHpYbQQgneHWS9UjNaC4Kzk-PfSHOs4sYlxhzhgnrZV9T32q1bSGgp52DtVUReYMm3lmF5gFc3PjQIXDfaJjALviVdbpLx6ExaY7IOvSuobVxv5zZ1ipAgwU4p9t4mZ0ZaKO--qv97GM0nA_G-cvr82Tw-JIDq-ouN4oD1hgwLShhvCwpL1kDGJuK8goYp0SrRlPRAKsNrgtNATdFBVQ3glea9bObg65PLmRUttNqoXzyoDpZFwTXLDF3B0YFH2PQRm6CXUPYSYLl_nfy-LvE5gc2pdI_RxDCSpaCCS7nbzM5mo5H7FPUkif-9sCDinLpt8GltP_o_gJ-uHxj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Dynamics of Ionic Transport and Electrokinetic Effects in Realistic Silica Channels</title><source>ACS Publications</source><creator>Lorenz, Christian D ; Crozier, Paul S ; Anderson, Joshua A ; Travesset, Alex</creator><creatorcontrib>Lorenz, Christian D ; Crozier, Paul S ; Anderson, Joshua A ; Travesset, Alex ; Ames Laboratory (AMES), Ames, IA</creatorcontrib><description>Silica is one of the most widely used inorganic materials in experiments and applications involving aqueous solutions of biomolecules, nanoparticles, etc. In this paper, we construct a detailed atomistic model of a silica interface that captures the essential experimentally known properties of a silica interface. We then perform all-atom molecular dynamics simulations of a silica nanochannel subjected to either an external pressure or an electric field and provide an atomistic description of ionic transport and both electro-osmotic flow and streaming currents for a solution of monovalent (0.4 M NaCl) as well as divalent (0.2 and 1.0 M CaCl 2) salts. Our results allow a detailed investigation of ζ-potentials, Stern layer conductance, charge inversion, ionic mobilities, as well as continuum theories and Onsager relations. We conclude with a discussion on the implications of our results for silica nanopore experiments and micro- and nanofluidic devices.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp711510k</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>AQUEOUS SOLUTIONS ; C: Surfaces, Interfaces, Catalysis ; ELECTRIC FIELDS ; ELECTRODYNAMICS ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; ONSAGER RELATIONS ; SILICA ; TRANSPORT</subject><ispartof>Journal of physical chemistry. C, 2008-07, Vol.112 (27), p.10222-10232</ispartof><rights>Copyright © 2008 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-fc5a0e0a0242135662563ba00f8258a3521ecbe27ba39f094e2a0b48a2eb758e3</citedby><cites>FETCH-LOGICAL-a389t-fc5a0e0a0242135662563ba00f8258a3521ecbe27ba39f094e2a0b48a2eb758e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp711510k$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp711510k$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/941093$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lorenz, Christian D</creatorcontrib><creatorcontrib>Crozier, Paul S</creatorcontrib><creatorcontrib>Anderson, Joshua A</creatorcontrib><creatorcontrib>Travesset, Alex</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA</creatorcontrib><title>Molecular Dynamics of Ionic Transport and Electrokinetic Effects in Realistic Silica Channels</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Silica is one of the most widely used inorganic materials in experiments and applications involving aqueous solutions of biomolecules, nanoparticles, etc. In this paper, we construct a detailed atomistic model of a silica interface that captures the essential experimentally known properties of a silica interface. We then perform all-atom molecular dynamics simulations of a silica nanochannel subjected to either an external pressure or an electric field and provide an atomistic description of ionic transport and both electro-osmotic flow and streaming currents for a solution of monovalent (0.4 M NaCl) as well as divalent (0.2 and 1.0 M CaCl 2) salts. Our results allow a detailed investigation of ζ-potentials, Stern layer conductance, charge inversion, ionic mobilities, as well as continuum theories and Onsager relations. We conclude with a discussion on the implications of our results for silica nanopore experiments and micro- and nanofluidic devices.</description><subject>AQUEOUS SOLUTIONS</subject><subject>C: Surfaces, Interfaces, Catalysis</subject><subject>ELECTRIC FIELDS</subject><subject>ELECTRODYNAMICS</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>ONSAGER RELATIONS</subject><subject>SILICA</subject><subject>TRANSPORT</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEUhQdRsFYX_oO4cOFiNI_JZGYptbUFi2IrriTciQlNO01KMgX7702pdOXqvj4O59wsuyb4nmBKHpYbQQgneHWS9UjNaC4Kzk-PfSHOs4sYlxhzhgnrZV9T32q1bSGgp52DtVUReYMm3lmF5gFc3PjQIXDfaJjALviVdbpLx6ExaY7IOvSuobVxv5zZ1ipAgwU4p9t4mZ0ZaKO--qv97GM0nA_G-cvr82Tw-JIDq-ouN4oD1hgwLShhvCwpL1kDGJuK8goYp0SrRlPRAKsNrgtNATdFBVQ3glea9bObg65PLmRUttNqoXzyoDpZFwTXLDF3B0YFH2PQRm6CXUPYSYLl_nfy-LvE5gc2pdI_RxDCSpaCCS7nbzM5mo5H7FPUkif-9sCDinLpt8GltP_o_gJ-uHxj</recordid><startdate>20080710</startdate><enddate>20080710</enddate><creator>Lorenz, Christian D</creator><creator>Crozier, Paul S</creator><creator>Anderson, Joshua A</creator><creator>Travesset, Alex</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20080710</creationdate><title>Molecular Dynamics of Ionic Transport and Electrokinetic Effects in Realistic Silica Channels</title><author>Lorenz, Christian D ; Crozier, Paul S ; Anderson, Joshua A ; Travesset, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-fc5a0e0a0242135662563ba00f8258a3521ecbe27ba39f094e2a0b48a2eb758e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>AQUEOUS SOLUTIONS</topic><topic>C: Surfaces, Interfaces, Catalysis</topic><topic>ELECTRIC FIELDS</topic><topic>ELECTRODYNAMICS</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>ONSAGER RELATIONS</topic><topic>SILICA</topic><topic>TRANSPORT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lorenz, Christian D</creatorcontrib><creatorcontrib>Crozier, Paul S</creatorcontrib><creatorcontrib>Anderson, Joshua A</creatorcontrib><creatorcontrib>Travesset, Alex</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lorenz, Christian D</au><au>Crozier, Paul S</au><au>Anderson, Joshua A</au><au>Travesset, Alex</au><aucorp>Ames Laboratory (AMES), Ames, IA</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics of Ionic Transport and Electrokinetic Effects in Realistic Silica Channels</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2008-07-10</date><risdate>2008</risdate><volume>112</volume><issue>27</issue><spage>10222</spage><epage>10232</epage><pages>10222-10232</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Silica is one of the most widely used inorganic materials in experiments and applications involving aqueous solutions of biomolecules, nanoparticles, etc. In this paper, we construct a detailed atomistic model of a silica interface that captures the essential experimentally known properties of a silica interface. We then perform all-atom molecular dynamics simulations of a silica nanochannel subjected to either an external pressure or an electric field and provide an atomistic description of ionic transport and both electro-osmotic flow and streaming currents for a solution of monovalent (0.4 M NaCl) as well as divalent (0.2 and 1.0 M CaCl 2) salts. Our results allow a detailed investigation of ζ-potentials, Stern layer conductance, charge inversion, ionic mobilities, as well as continuum theories and Onsager relations. We conclude with a discussion on the implications of our results for silica nanopore experiments and micro- and nanofluidic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/jp711510k</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2008-07, Vol.112 (27), p.10222-10232 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_osti_scitechconnect_941093 |
source | ACS Publications |
subjects | AQUEOUS SOLUTIONS C: Surfaces, Interfaces, Catalysis ELECTRIC FIELDS ELECTRODYNAMICS INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ONSAGER RELATIONS SILICA TRANSPORT |
title | Molecular Dynamics of Ionic Transport and Electrokinetic Effects in Realistic Silica Channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20of%20Ionic%20Transport%20and%20Electrokinetic%20Effects%20in%20Realistic%20Silica%20Channels&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Lorenz,%20Christian%20D&rft.aucorp=Ames%20Laboratory%20(AMES),%20Ames,%20IA&rft.date=2008-07-10&rft.volume=112&rft.issue=27&rft.spage=10222&rft.epage=10232&rft.pages=10222-10232&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp711510k&rft_dat=%3Cacs_osti_%3Eb816250772%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |