Simulation of Adsorption of DNA on Carbon Nanotubes
We report molecular dynamics simulations of DNA adsorption on a single-walled carbon nanotube (SWNT) in an aqueous environment. We have modeled a DNA segment with 12 base pairs (Dickerson dodecamer) and a (8,8) SWNT in water, with counterions to maintain total charge neutrality. Simulations show tha...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2007-08, Vol.129 (34), p.10438-10445 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10445 |
---|---|
container_issue | 34 |
container_start_page | 10438 |
container_title | Journal of the American Chemical Society |
container_volume | 129 |
creator | Zhao Johnson, J. Karl |
description | We report molecular dynamics simulations of DNA adsorption on a single-walled carbon nanotube (SWNT) in an aqueous environment. We have modeled a DNA segment with 12 base pairs (Dickerson dodecamer) and a (8,8) SWNT in water, with counterions to maintain total charge neutrality. Simulations show that DNA binds to the external surface of an uncharged or positively charged SWNT on a time scale of a few hundred picoseconds. The hydrophobic end groups of DNA are attracted to the hydrophobic SWNT surface of uncharged SWNTs, while the hydrophilic backbone of DNA does not bind to the uncharged SWNT. The binding mode of DNA to charged SWNTs is qualitatively different from uncharged SWNTs. The phosphodiester groups of the DNA backbone are attracted to a positively charged SWNT surface while DNA does not adsorb on negatively charged SWNTs. There is no evidence for canonical double-stranded DNA wrapping around either charged or uncharged SWNTs on the very short time scales of the simulations. The adsorption process appears to have negligible effect on the internal stacking structure of the DNA molecule but significantly affects the A to B form conversion of A-DNA. The adsorption of A-DNA onto an uncharged SWNT inhibits the complete relaxation of A-DNA to B-DNA within the time scale of the simulations. In contrast, binding of the A-DNA onto a positively charged SWNT may promote slightly the A to B conversion. |
doi_str_mv | 10.1021/ja071844m |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_937563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20593231</sourcerecordid><originalsourceid>FETCH-LOGICAL-a474t-c4afec8ac4693a6238fbf9144a704affc8fb1c1c41dbe477fe643f6f2e63eb243</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuAgiq0fB_-A1IOCh9V8bbJ7LFVbsdRC6zlk0wS37m5qkgX990a21ovgaTLMw4R5AThD8AZBjG7XEnKUUVrvgT5KMUxShNk-6EMIccIzRnrgyPt1bCnO0CHoIc44yyjsA7Io67aSobTNwJrBcOWt2_x0d7PhIL5G0hWxzGRjQ1tofwIOjKy8Pt3WY_DycL8cTZLp8_hxNJwmknIaEkWl0SqTirKcSIZJZgqTI0olh3FkVOyRQoqiVaEp50YzSgwzWDOiC0zJMbjo9lofSuFVGbR6VbZptAoiJzxlJJqrzmycfW-1D6IuvdJVJRttWy9YhqKk7F-IYZoTTFCE1x1UznrvtBEbV9bSfQoExXfcYhd3tOfbpW1R69Wv3OYbQdKB0gf9sZtL9yYYjxeI5XwhxhOYTmZPVMyjv-y8VF6sbeuaGPAfH38BJUiT5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20593231</pqid></control><display><type>article</type><title>Simulation of Adsorption of DNA on Carbon Nanotubes</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhao ; Johnson, J. Karl</creator><creatorcontrib>Zhao ; Johnson, J. Karl ; National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN</creatorcontrib><description>We report molecular dynamics simulations of DNA adsorption on a single-walled carbon nanotube (SWNT) in an aqueous environment. We have modeled a DNA segment with 12 base pairs (Dickerson dodecamer) and a (8,8) SWNT in water, with counterions to maintain total charge neutrality. Simulations show that DNA binds to the external surface of an uncharged or positively charged SWNT on a time scale of a few hundred picoseconds. The hydrophobic end groups of DNA are attracted to the hydrophobic SWNT surface of uncharged SWNTs, while the hydrophilic backbone of DNA does not bind to the uncharged SWNT. The binding mode of DNA to charged SWNTs is qualitatively different from uncharged SWNTs. The phosphodiester groups of the DNA backbone are attracted to a positively charged SWNT surface while DNA does not adsorb on negatively charged SWNTs. There is no evidence for canonical double-stranded DNA wrapping around either charged or uncharged SWNTs on the very short time scales of the simulations. The adsorption process appears to have negligible effect on the internal stacking structure of the DNA molecule but significantly affects the A to B form conversion of A-DNA. The adsorption of A-DNA onto an uncharged SWNT inhibits the complete relaxation of A-DNA to B-DNA within the time scale of the simulations. In contrast, binding of the A-DNA onto a positively charged SWNT may promote slightly the A to B conversion.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1272-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja071844m</identifier><identifier>PMID: 17676840</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ADSORPTION ; ADSORPTION HEAT ; BASIC BIOLOGICAL SCIENCES ; CARBON ; CHEMISORPTION ; Computer Simulation ; DNA ; DNA - chemistry ; Genome - genetics ; Models, Molecular ; MORPHOLOGY ; NANOTUBES ; Nanotubes, Carbon - chemistry ; Nucleic Acid Conformation ; PENTACENE ; RELAXATION ; SILICON ; SIMULATION ; SORPTIVE PROPERTIES ; WATER</subject><ispartof>Journal of the American Chemical Society, 2007-08, Vol.129 (34), p.10438-10445</ispartof><rights>Copyright © 2007 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a474t-c4afec8ac4693a6238fbf9144a704affc8fb1c1c41dbe477fe643f6f2e63eb243</citedby><cites>FETCH-LOGICAL-a474t-c4afec8ac4693a6238fbf9144a704affc8fb1c1c41dbe477fe643f6f2e63eb243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja071844m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja071844m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,778,782,883,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17676840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/937563$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao</creatorcontrib><creatorcontrib>Johnson, J. Karl</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN</creatorcontrib><title>Simulation of Adsorption of DNA on Carbon Nanotubes</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>We report molecular dynamics simulations of DNA adsorption on a single-walled carbon nanotube (SWNT) in an aqueous environment. We have modeled a DNA segment with 12 base pairs (Dickerson dodecamer) and a (8,8) SWNT in water, with counterions to maintain total charge neutrality. Simulations show that DNA binds to the external surface of an uncharged or positively charged SWNT on a time scale of a few hundred picoseconds. The hydrophobic end groups of DNA are attracted to the hydrophobic SWNT surface of uncharged SWNTs, while the hydrophilic backbone of DNA does not bind to the uncharged SWNT. The binding mode of DNA to charged SWNTs is qualitatively different from uncharged SWNTs. The phosphodiester groups of the DNA backbone are attracted to a positively charged SWNT surface while DNA does not adsorb on negatively charged SWNTs. There is no evidence for canonical double-stranded DNA wrapping around either charged or uncharged SWNTs on the very short time scales of the simulations. The adsorption process appears to have negligible effect on the internal stacking structure of the DNA molecule but significantly affects the A to B form conversion of A-DNA. The adsorption of A-DNA onto an uncharged SWNT inhibits the complete relaxation of A-DNA to B-DNA within the time scale of the simulations. In contrast, binding of the A-DNA onto a positively charged SWNT may promote slightly the A to B conversion.</description><subject>ADSORPTION</subject><subject>ADSORPTION HEAT</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>CARBON</subject><subject>CHEMISORPTION</subject><subject>Computer Simulation</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Genome - genetics</subject><subject>Models, Molecular</subject><subject>MORPHOLOGY</subject><subject>NANOTUBES</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nucleic Acid Conformation</subject><subject>PENTACENE</subject><subject>RELAXATION</subject><subject>SILICON</subject><subject>SIMULATION</subject><subject>SORPTIVE PROPERTIES</subject><subject>WATER</subject><issn>0002-7863</issn><issn>1272-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1LAzEQBuAgiq0fB_-A1IOCh9V8bbJ7LFVbsdRC6zlk0wS37m5qkgX990a21ovgaTLMw4R5AThD8AZBjG7XEnKUUVrvgT5KMUxShNk-6EMIccIzRnrgyPt1bCnO0CHoIc44yyjsA7Io67aSobTNwJrBcOWt2_x0d7PhIL5G0hWxzGRjQ1tofwIOjKy8Pt3WY_DycL8cTZLp8_hxNJwmknIaEkWl0SqTirKcSIZJZgqTI0olh3FkVOyRQoqiVaEp50YzSgwzWDOiC0zJMbjo9lofSuFVGbR6VbZptAoiJzxlJJqrzmycfW-1D6IuvdJVJRttWy9YhqKk7F-IYZoTTFCE1x1UznrvtBEbV9bSfQoExXfcYhd3tOfbpW1R69Wv3OYbQdKB0gf9sZtL9yYYjxeI5XwhxhOYTmZPVMyjv-y8VF6sbeuaGPAfH38BJUiT5A</recordid><startdate>20070829</startdate><enddate>20070829</enddate><creator>Zhao</creator><creator>Johnson, J. Karl</creator><general>American Chemical Society</general><general>American Chemical Society, Washington, DC</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20070829</creationdate><title>Simulation of Adsorption of DNA on Carbon Nanotubes</title><author>Zhao ; Johnson, J. Karl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a474t-c4afec8ac4693a6238fbf9144a704affc8fb1c1c41dbe477fe643f6f2e63eb243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>ADSORPTION</topic><topic>ADSORPTION HEAT</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>CARBON</topic><topic>CHEMISORPTION</topic><topic>Computer Simulation</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Genome - genetics</topic><topic>Models, Molecular</topic><topic>MORPHOLOGY</topic><topic>NANOTUBES</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nucleic Acid Conformation</topic><topic>PENTACENE</topic><topic>RELAXATION</topic><topic>SILICON</topic><topic>SIMULATION</topic><topic>SORPTIVE PROPERTIES</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao</creatorcontrib><creatorcontrib>Johnson, J. Karl</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao</au><au>Johnson, J. Karl</au><aucorp>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Adsorption of DNA on Carbon Nanotubes</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2007-08-29</date><risdate>2007</risdate><volume>129</volume><issue>34</issue><spage>10438</spage><epage>10445</epage><pages>10438-10445</pages><issn>0002-7863</issn><issn>1272-7863</issn><eissn>1520-5126</eissn><abstract>We report molecular dynamics simulations of DNA adsorption on a single-walled carbon nanotube (SWNT) in an aqueous environment. We have modeled a DNA segment with 12 base pairs (Dickerson dodecamer) and a (8,8) SWNT in water, with counterions to maintain total charge neutrality. Simulations show that DNA binds to the external surface of an uncharged or positively charged SWNT on a time scale of a few hundred picoseconds. The hydrophobic end groups of DNA are attracted to the hydrophobic SWNT surface of uncharged SWNTs, while the hydrophilic backbone of DNA does not bind to the uncharged SWNT. The binding mode of DNA to charged SWNTs is qualitatively different from uncharged SWNTs. The phosphodiester groups of the DNA backbone are attracted to a positively charged SWNT surface while DNA does not adsorb on negatively charged SWNTs. There is no evidence for canonical double-stranded DNA wrapping around either charged or uncharged SWNTs on the very short time scales of the simulations. The adsorption process appears to have negligible effect on the internal stacking structure of the DNA molecule but significantly affects the A to B form conversion of A-DNA. The adsorption of A-DNA onto an uncharged SWNT inhibits the complete relaxation of A-DNA to B-DNA within the time scale of the simulations. In contrast, binding of the A-DNA onto a positively charged SWNT may promote slightly the A to B conversion.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17676840</pmid><doi>10.1021/ja071844m</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2007-08, Vol.129 (34), p.10438-10445 |
issn | 0002-7863 1272-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_937563 |
source | MEDLINE; ACS Publications |
subjects | ADSORPTION ADSORPTION HEAT BASIC BIOLOGICAL SCIENCES CARBON CHEMISORPTION Computer Simulation DNA DNA - chemistry Genome - genetics Models, Molecular MORPHOLOGY NANOTUBES Nanotubes, Carbon - chemistry Nucleic Acid Conformation PENTACENE RELAXATION SILICON SIMULATION SORPTIVE PROPERTIES WATER |
title | Simulation of Adsorption of DNA on Carbon Nanotubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Adsorption%20of%20DNA%20on%20Carbon%20Nanotubes&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhao&rft.aucorp=National%20Energy%20Technology%20Laboratory%20(NETL),%20Pittsburgh,%20PA,%20Morgantown,%20WV,%20and%20Albany,%20OR&rft.date=2007-08-29&rft.volume=129&rft.issue=34&rft.spage=10438&rft.epage=10445&rft.pages=10438-10445&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja071844m&rft_dat=%3Cproquest_osti_%3E20593231%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20593231&rft_id=info:pmid/17676840&rfr_iscdi=true |