Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004

Subgrid‐scale cloud condensation nuclei (CCN) heterogeneity is not represented in global climate models (GCM) and potentially contributes systematic errors to simulated cloud effects. High‐resolution WRF‐Chem model simulations were performed to investigate the impact of assuming a uniform CCN distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2007-10, Vol.34 (19), p.n/a
Hauptverfasser: Gustafson Jr, William I., Chapman, Elaine G., Ghan, Steven J., Easter, Richard C., Fast, Jerome D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page
container_title Geophysical research letters
container_volume 34
creator Gustafson Jr, William I.
Chapman, Elaine G.
Ghan, Steven J.
Easter, Richard C.
Fast, Jerome D.
description Subgrid‐scale cloud condensation nuclei (CCN) heterogeneity is not represented in global climate models (GCM) and potentially contributes systematic errors to simulated cloud effects. High‐resolution WRF‐Chem model simulations were performed to investigate the impact of assuming a uniform CCN distribution on cloud properties and surface radiation over a region the size of a GCM grid column. Results indicate that a prescribed CCN distribution allowing for vertical and temporal fluctuations does substantially better in simulating cloud properties and radiative effects than does a prescribed uniform and constant CCN distribution. Spatially and temporally averaged net effects on downwelling shortwave radiation are between −3 and −11 W m−2 for the fluctuating and uniform distributions, respectively, versus a control simulation with fully interactive aerosols. Both prescribed CCN distributions produce optically thicker clouds more often than the control, with the mean cloud optical depth increasing by over 25% when using the uniform and constant CCN distribution.
doi_str_mv 10.1029/2007GL030021
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_919978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20551088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5078-291e0ad748eb36539699f69a2b2d41d3c615b0b366b0ebc69deb82562f7a38f83</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhSNEJS6FHT_ALGBFYGznYS-rqk0rXRVBgS4txxlTQ2Jf7ER9_Hp8SXms2NjWzHeOjnWK4gWFtxSYfMcA2m4LHIDRR8WGyqoqRZ49LjYAMr9Z2zwpnqb0DSBTnG6K-_Npp81MgidTGHDEgZgxLPm81jEvMLo0O5PIsCCZA0lu2o3OuszNEfU8oc9iSxbvbIjTb3HwA_qkZ5d9_WJGdNkgOv-VXJwcfbgkOWn1rDiwekz4_OE-LD6fnnw6Piu377vz46NtaWpoRckkRdBDWwnseVNz2UhpG6lZz4aKDtw0tO4hr5oesDeNHLAXrG6YbTUXVvDD4uXqG_JPVDJuRnOdE3o0s5JUynbPvF6ZXQw_FkyzmlwyOI7aY1iSYlDXFMQefLOCJoaUIlq1i27S8U5RUPsS1L8lZPzVg69ORo82am9c-quRTDCQLHNs5W7ciHf_9VTdxy3j9FfochXlivD2j0jH76ppeVurq4tO0e6LEFenZ-qS_wSCp6QK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20551088</pqid></control><display><type>article</type><title>Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gustafson Jr, William I. ; Chapman, Elaine G. ; Ghan, Steven J. ; Easter, Richard C. ; Fast, Jerome D.</creator><creatorcontrib>Gustafson Jr, William I. ; Chapman, Elaine G. ; Ghan, Steven J. ; Easter, Richard C. ; Fast, Jerome D. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Subgrid‐scale cloud condensation nuclei (CCN) heterogeneity is not represented in global climate models (GCM) and potentially contributes systematic errors to simulated cloud effects. High‐resolution WRF‐Chem model simulations were performed to investigate the impact of assuming a uniform CCN distribution on cloud properties and surface radiation over a region the size of a GCM grid column. Results indicate that a prescribed CCN distribution allowing for vertical and temporal fluctuations does substantially better in simulating cloud properties and radiative effects than does a prescribed uniform and constant CCN distribution. Spatially and temporally averaged net effects on downwelling shortwave radiation are between −3 and −11 W m−2 for the fluctuating and uniform distributions, respectively, versus a control simulation with fully interactive aerosols. Both prescribed CCN distributions produce optically thicker clouds more often than the control, with the mean cloud optical depth increasing by over 25% when using the uniform and constant CCN distribution.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2007GL030021</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>aerosol-cloud effects ; AEROSOLS ; CLIMATE MODELS ; cloud physics ; CLOUDS ; CONDENSATION NUCLEI ; DISTRIBUTION ; DOWNWELLING ; Earth sciences ; Earth, ocean, space ; ENVIRONMENTAL SCIENCES ; Exact sciences and technology ; FLUCTUATIONS ; radiation ; RADIATIONS ; SIMULATION</subject><ispartof>Geophysical research letters, 2007-10, Vol.34 (19), p.n/a</ispartof><rights>Copyright 2007 by the American Geophysical Union.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5078-291e0ad748eb36539699f69a2b2d41d3c615b0b366b0ebc69deb82562f7a38f83</citedby><cites>FETCH-LOGICAL-c5078-291e0ad748eb36539699f69a2b2d41d3c615b0b366b0ebc69deb82562f7a38f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2007GL030021$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2007GL030021$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19282092$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/919978$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gustafson Jr, William I.</creatorcontrib><creatorcontrib>Chapman, Elaine G.</creatorcontrib><creatorcontrib>Ghan, Steven J.</creatorcontrib><creatorcontrib>Easter, Richard C.</creatorcontrib><creatorcontrib>Fast, Jerome D.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Subgrid‐scale cloud condensation nuclei (CCN) heterogeneity is not represented in global climate models (GCM) and potentially contributes systematic errors to simulated cloud effects. High‐resolution WRF‐Chem model simulations were performed to investigate the impact of assuming a uniform CCN distribution on cloud properties and surface radiation over a region the size of a GCM grid column. Results indicate that a prescribed CCN distribution allowing for vertical and temporal fluctuations does substantially better in simulating cloud properties and radiative effects than does a prescribed uniform and constant CCN distribution. Spatially and temporally averaged net effects on downwelling shortwave radiation are between −3 and −11 W m−2 for the fluctuating and uniform distributions, respectively, versus a control simulation with fully interactive aerosols. Both prescribed CCN distributions produce optically thicker clouds more often than the control, with the mean cloud optical depth increasing by over 25% when using the uniform and constant CCN distribution.</description><subject>aerosol-cloud effects</subject><subject>AEROSOLS</subject><subject>CLIMATE MODELS</subject><subject>cloud physics</subject><subject>CLOUDS</subject><subject>CONDENSATION NUCLEI</subject><subject>DISTRIBUTION</subject><subject>DOWNWELLING</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Exact sciences and technology</subject><subject>FLUCTUATIONS</subject><subject>radiation</subject><subject>RADIATIONS</subject><subject>SIMULATION</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1TAQhSNEJS6FHT_ALGBFYGznYS-rqk0rXRVBgS4txxlTQ2Jf7ER9_Hp8SXms2NjWzHeOjnWK4gWFtxSYfMcA2m4LHIDRR8WGyqoqRZ49LjYAMr9Z2zwpnqb0DSBTnG6K-_Npp81MgidTGHDEgZgxLPm81jEvMLo0O5PIsCCZA0lu2o3OuszNEfU8oc9iSxbvbIjTb3HwA_qkZ5d9_WJGdNkgOv-VXJwcfbgkOWn1rDiwekz4_OE-LD6fnnw6Piu377vz46NtaWpoRckkRdBDWwnseVNz2UhpG6lZz4aKDtw0tO4hr5oesDeNHLAXrG6YbTUXVvDD4uXqG_JPVDJuRnOdE3o0s5JUynbPvF6ZXQw_FkyzmlwyOI7aY1iSYlDXFMQefLOCJoaUIlq1i27S8U5RUPsS1L8lZPzVg69ORo82am9c-quRTDCQLHNs5W7ciHf_9VTdxy3j9FfochXlivD2j0jH76ppeVurq4tO0e6LEFenZ-qS_wSCp6QK</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Gustafson Jr, William I.</creator><creator>Chapman, Elaine G.</creator><creator>Ghan, Steven J.</creator><creator>Easter, Richard C.</creator><creator>Fast, Jerome D.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>OTOTI</scope></search><sort><creationdate>200710</creationdate><title>Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004</title><author>Gustafson Jr, William I. ; Chapman, Elaine G. ; Ghan, Steven J. ; Easter, Richard C. ; Fast, Jerome D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5078-291e0ad748eb36539699f69a2b2d41d3c615b0b366b0ebc69deb82562f7a38f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>aerosol-cloud effects</topic><topic>AEROSOLS</topic><topic>CLIMATE MODELS</topic><topic>cloud physics</topic><topic>CLOUDS</topic><topic>CONDENSATION NUCLEI</topic><topic>DISTRIBUTION</topic><topic>DOWNWELLING</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Exact sciences and technology</topic><topic>FLUCTUATIONS</topic><topic>radiation</topic><topic>RADIATIONS</topic><topic>SIMULATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gustafson Jr, William I.</creatorcontrib><creatorcontrib>Chapman, Elaine G.</creatorcontrib><creatorcontrib>Ghan, Steven J.</creatorcontrib><creatorcontrib>Easter, Richard C.</creatorcontrib><creatorcontrib>Fast, Jerome D.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>OSTI.GOV</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gustafson Jr, William I.</au><au>Chapman, Elaine G.</au><au>Ghan, Steven J.</au><au>Easter, Richard C.</au><au>Fast, Jerome D.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2007-10</date><risdate>2007</risdate><volume>34</volume><issue>19</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>Subgrid‐scale cloud condensation nuclei (CCN) heterogeneity is not represented in global climate models (GCM) and potentially contributes systematic errors to simulated cloud effects. High‐resolution WRF‐Chem model simulations were performed to investigate the impact of assuming a uniform CCN distribution on cloud properties and surface radiation over a region the size of a GCM grid column. Results indicate that a prescribed CCN distribution allowing for vertical and temporal fluctuations does substantially better in simulating cloud properties and radiative effects than does a prescribed uniform and constant CCN distribution. Spatially and temporally averaged net effects on downwelling shortwave radiation are between −3 and −11 W m−2 for the fluctuating and uniform distributions, respectively, versus a control simulation with fully interactive aerosols. Both prescribed CCN distributions produce optically thicker clouds more often than the control, with the mean cloud optical depth increasing by over 25% when using the uniform and constant CCN distribution.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2007GL030021</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2007-10, Vol.34 (19), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_osti_scitechconnect_919978
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects aerosol-cloud effects
AEROSOLS
CLIMATE MODELS
cloud physics
CLOUDS
CONDENSATION NUCLEI
DISTRIBUTION
DOWNWELLING
Earth sciences
Earth, ocean, space
ENVIRONMENTAL SCIENCES
Exact sciences and technology
FLUCTUATIONS
radiation
RADIATIONS
SIMULATION
title Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A17%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20on%20modeled%20cloud%20characteristics%20due%20to%20simplified%20treatment%20of%20uniform%20cloud%20condensation%20nuclei%20during%20NEAQS%202004&rft.jtitle=Geophysical%20research%20letters&rft.au=Gustafson%20Jr,%20William%20I.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2007-10&rft.volume=34&rft.issue=19&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2007GL030021&rft_dat=%3Cproquest_osti_%3E20551088%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20551088&rft_id=info:pmid/&rfr_iscdi=true