Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004
Subgrid‐scale cloud condensation nuclei (CCN) heterogeneity is not represented in global climate models (GCM) and potentially contributes systematic errors to simulated cloud effects. High‐resolution WRF‐Chem model simulations were performed to investigate the impact of assuming a uniform CCN distri...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2007-10, Vol.34 (19), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Geophysical research letters |
container_volume | 34 |
creator | Gustafson Jr, William I. Chapman, Elaine G. Ghan, Steven J. Easter, Richard C. Fast, Jerome D. |
description | Subgrid‐scale cloud condensation nuclei (CCN) heterogeneity is not represented in global climate models (GCM) and potentially contributes systematic errors to simulated cloud effects. High‐resolution WRF‐Chem model simulations were performed to investigate the impact of assuming a uniform CCN distribution on cloud properties and surface radiation over a region the size of a GCM grid column. Results indicate that a prescribed CCN distribution allowing for vertical and temporal fluctuations does substantially better in simulating cloud properties and radiative effects than does a prescribed uniform and constant CCN distribution. Spatially and temporally averaged net effects on downwelling shortwave radiation are between −3 and −11 W m−2 for the fluctuating and uniform distributions, respectively, versus a control simulation with fully interactive aerosols. Both prescribed CCN distributions produce optically thicker clouds more often than the control, with the mean cloud optical depth increasing by over 25% when using the uniform and constant CCN distribution. |
doi_str_mv | 10.1029/2007GL030021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_919978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20551088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5078-291e0ad748eb36539699f69a2b2d41d3c615b0b366b0ebc69deb82562f7a38f83</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhSNEJS6FHT_ALGBFYGznYS-rqk0rXRVBgS4txxlTQ2Jf7ER9_Hp8SXms2NjWzHeOjnWK4gWFtxSYfMcA2m4LHIDRR8WGyqoqRZ49LjYAMr9Z2zwpnqb0DSBTnG6K-_Npp81MgidTGHDEgZgxLPm81jEvMLo0O5PIsCCZA0lu2o3OuszNEfU8oc9iSxbvbIjTb3HwA_qkZ5d9_WJGdNkgOv-VXJwcfbgkOWn1rDiwekz4_OE-LD6fnnw6Piu377vz46NtaWpoRckkRdBDWwnseVNz2UhpG6lZz4aKDtw0tO4hr5oesDeNHLAXrG6YbTUXVvDD4uXqG_JPVDJuRnOdE3o0s5JUynbPvF6ZXQw_FkyzmlwyOI7aY1iSYlDXFMQefLOCJoaUIlq1i27S8U5RUPsS1L8lZPzVg69ORo82am9c-quRTDCQLHNs5W7ciHf_9VTdxy3j9FfochXlivD2j0jH76ppeVurq4tO0e6LEFenZ-qS_wSCp6QK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20551088</pqid></control><display><type>article</type><title>Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gustafson Jr, William I. ; Chapman, Elaine G. ; Ghan, Steven J. ; Easter, Richard C. ; Fast, Jerome D.</creator><creatorcontrib>Gustafson Jr, William I. ; Chapman, Elaine G. ; Ghan, Steven J. ; Easter, Richard C. ; Fast, Jerome D. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Subgrid‐scale cloud condensation nuclei (CCN) heterogeneity is not represented in global climate models (GCM) and potentially contributes systematic errors to simulated cloud effects. High‐resolution WRF‐Chem model simulations were performed to investigate the impact of assuming a uniform CCN distribution on cloud properties and surface radiation over a region the size of a GCM grid column. Results indicate that a prescribed CCN distribution allowing for vertical and temporal fluctuations does substantially better in simulating cloud properties and radiative effects than does a prescribed uniform and constant CCN distribution. Spatially and temporally averaged net effects on downwelling shortwave radiation are between −3 and −11 W m−2 for the fluctuating and uniform distributions, respectively, versus a control simulation with fully interactive aerosols. Both prescribed CCN distributions produce optically thicker clouds more often than the control, with the mean cloud optical depth increasing by over 25% when using the uniform and constant CCN distribution.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2007GL030021</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>aerosol-cloud effects ; AEROSOLS ; CLIMATE MODELS ; cloud physics ; CLOUDS ; CONDENSATION NUCLEI ; DISTRIBUTION ; DOWNWELLING ; Earth sciences ; Earth, ocean, space ; ENVIRONMENTAL SCIENCES ; Exact sciences and technology ; FLUCTUATIONS ; radiation ; RADIATIONS ; SIMULATION</subject><ispartof>Geophysical research letters, 2007-10, Vol.34 (19), p.n/a</ispartof><rights>Copyright 2007 by the American Geophysical Union.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5078-291e0ad748eb36539699f69a2b2d41d3c615b0b366b0ebc69deb82562f7a38f83</citedby><cites>FETCH-LOGICAL-c5078-291e0ad748eb36539699f69a2b2d41d3c615b0b366b0ebc69deb82562f7a38f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2007GL030021$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2007GL030021$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19282092$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/919978$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gustafson Jr, William I.</creatorcontrib><creatorcontrib>Chapman, Elaine G.</creatorcontrib><creatorcontrib>Ghan, Steven J.</creatorcontrib><creatorcontrib>Easter, Richard C.</creatorcontrib><creatorcontrib>Fast, Jerome D.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Subgrid‐scale cloud condensation nuclei (CCN) heterogeneity is not represented in global climate models (GCM) and potentially contributes systematic errors to simulated cloud effects. High‐resolution WRF‐Chem model simulations were performed to investigate the impact of assuming a uniform CCN distribution on cloud properties and surface radiation over a region the size of a GCM grid column. Results indicate that a prescribed CCN distribution allowing for vertical and temporal fluctuations does substantially better in simulating cloud properties and radiative effects than does a prescribed uniform and constant CCN distribution. Spatially and temporally averaged net effects on downwelling shortwave radiation are between −3 and −11 W m−2 for the fluctuating and uniform distributions, respectively, versus a control simulation with fully interactive aerosols. Both prescribed CCN distributions produce optically thicker clouds more often than the control, with the mean cloud optical depth increasing by over 25% when using the uniform and constant CCN distribution.</description><subject>aerosol-cloud effects</subject><subject>AEROSOLS</subject><subject>CLIMATE MODELS</subject><subject>cloud physics</subject><subject>CLOUDS</subject><subject>CONDENSATION NUCLEI</subject><subject>DISTRIBUTION</subject><subject>DOWNWELLING</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Exact sciences and technology</subject><subject>FLUCTUATIONS</subject><subject>radiation</subject><subject>RADIATIONS</subject><subject>SIMULATION</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1TAQhSNEJS6FHT_ALGBFYGznYS-rqk0rXRVBgS4txxlTQ2Jf7ER9_Hp8SXms2NjWzHeOjnWK4gWFtxSYfMcA2m4LHIDRR8WGyqoqRZ49LjYAMr9Z2zwpnqb0DSBTnG6K-_Npp81MgidTGHDEgZgxLPm81jEvMLo0O5PIsCCZA0lu2o3OuszNEfU8oc9iSxbvbIjTb3HwA_qkZ5d9_WJGdNkgOv-VXJwcfbgkOWn1rDiwekz4_OE-LD6fnnw6Piu377vz46NtaWpoRckkRdBDWwnseVNz2UhpG6lZz4aKDtw0tO4hr5oesDeNHLAXrG6YbTUXVvDD4uXqG_JPVDJuRnOdE3o0s5JUynbPvF6ZXQw_FkyzmlwyOI7aY1iSYlDXFMQefLOCJoaUIlq1i27S8U5RUPsS1L8lZPzVg69ORo82am9c-quRTDCQLHNs5W7ciHf_9VTdxy3j9FfochXlivD2j0jH76ppeVurq4tO0e6LEFenZ-qS_wSCp6QK</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Gustafson Jr, William I.</creator><creator>Chapman, Elaine G.</creator><creator>Ghan, Steven J.</creator><creator>Easter, Richard C.</creator><creator>Fast, Jerome D.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>OTOTI</scope></search><sort><creationdate>200710</creationdate><title>Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004</title><author>Gustafson Jr, William I. ; Chapman, Elaine G. ; Ghan, Steven J. ; Easter, Richard C. ; Fast, Jerome D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5078-291e0ad748eb36539699f69a2b2d41d3c615b0b366b0ebc69deb82562f7a38f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>aerosol-cloud effects</topic><topic>AEROSOLS</topic><topic>CLIMATE MODELS</topic><topic>cloud physics</topic><topic>CLOUDS</topic><topic>CONDENSATION NUCLEI</topic><topic>DISTRIBUTION</topic><topic>DOWNWELLING</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Exact sciences and technology</topic><topic>FLUCTUATIONS</topic><topic>radiation</topic><topic>RADIATIONS</topic><topic>SIMULATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gustafson Jr, William I.</creatorcontrib><creatorcontrib>Chapman, Elaine G.</creatorcontrib><creatorcontrib>Ghan, Steven J.</creatorcontrib><creatorcontrib>Easter, Richard C.</creatorcontrib><creatorcontrib>Fast, Jerome D.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>OSTI.GOV</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gustafson Jr, William I.</au><au>Chapman, Elaine G.</au><au>Ghan, Steven J.</au><au>Easter, Richard C.</au><au>Fast, Jerome D.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2007-10</date><risdate>2007</risdate><volume>34</volume><issue>19</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>Subgrid‐scale cloud condensation nuclei (CCN) heterogeneity is not represented in global climate models (GCM) and potentially contributes systematic errors to simulated cloud effects. High‐resolution WRF‐Chem model simulations were performed to investigate the impact of assuming a uniform CCN distribution on cloud properties and surface radiation over a region the size of a GCM grid column. Results indicate that a prescribed CCN distribution allowing for vertical and temporal fluctuations does substantially better in simulating cloud properties and radiative effects than does a prescribed uniform and constant CCN distribution. Spatially and temporally averaged net effects on downwelling shortwave radiation are between −3 and −11 W m−2 for the fluctuating and uniform distributions, respectively, versus a control simulation with fully interactive aerosols. Both prescribed CCN distributions produce optically thicker clouds more often than the control, with the mean cloud optical depth increasing by over 25% when using the uniform and constant CCN distribution.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2007GL030021</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2007-10, Vol.34 (19), p.n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_osti_scitechconnect_919978 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | aerosol-cloud effects AEROSOLS CLIMATE MODELS cloud physics CLOUDS CONDENSATION NUCLEI DISTRIBUTION DOWNWELLING Earth sciences Earth, ocean, space ENVIRONMENTAL SCIENCES Exact sciences and technology FLUCTUATIONS radiation RADIATIONS SIMULATION |
title | Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A17%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20on%20modeled%20cloud%20characteristics%20due%20to%20simplified%20treatment%20of%20uniform%20cloud%20condensation%20nuclei%20during%20NEAQS%202004&rft.jtitle=Geophysical%20research%20letters&rft.au=Gustafson%20Jr,%20William%20I.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2007-10&rft.volume=34&rft.issue=19&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2007GL030021&rft_dat=%3Cproquest_osti_%3E20551088%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20551088&rft_id=info:pmid/&rfr_iscdi=true |