Gradient incorporation in one-dimensional applications of interpolating moving least-squares methods for fitting potential energy surfaces
We present several approaches to use gradients in higher degree interpolating moving least squares (IMLS) methods for representing a potential energy surface (PES). General procedures are developed to obtain smooth approximations of the PES and its derivatives from quasi-uniform sets of energy and g...
Gespeichert in:
Veröffentlicht in: | Theoretical chemistry accounts 2007-10, Vol.118 (4), p.755-767 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 767 |
---|---|
container_issue | 4 |
container_start_page | 755 |
container_title | Theoretical chemistry accounts |
container_volume | 118 |
creator | Tokmakov, Igor V. Wagner, Albert F. Minkoff, Michael Thompson, Donald L. |
description | We present several approaches to use gradients in higher degree interpolating moving least squares (IMLS) methods for representing a potential energy surface (PES). General procedures are developed to obtain smooth approximations of the PES and its derivatives from quasi-uniform sets of energy and gradient data points. These methods are illustrated and analyzed for the Morse oscillator and a 1-D slice of the ground-state PES for the HCO radical computed using density functional theory. Variations in the IMLS fits with the number and distribution of points and the degree of the polynomial fitting basis set are examined. We determine the effects of gradient inclusion on the accuracy of the IMLS values of the energy, first and second derivatives for two 1-D test cases. Gradient inclusion reduces the number of data points required by up to 40%. |
doi_str_mv | 10.1007/s00214-007-0358-7 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_919729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00214_007_0358_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-6032fcf86f444dad71b5ab9b3785ed89c3f38b4938a1cdf802f19b1c0dfa717f3</originalsourceid><addsrcrecordid>eNotkN1KAzEQhYMoWKsP4F18gGh-dpvspRStQsEbBe9CNj9tZDdZk1ToK_jUpq1Xc2bmmzNwALgl-J5gzB8yxpQ0qEqEWSsQPwMz0jCKKGXN-b8Wgnxegqucv3DFactn4HeVlPE2FOiDjmmKSRUfQ-1gDBYZP9qQ60ANUE3T4PVxnWF0FSm2Hgx1EjZwjD-HMliVC8rfO5VshqMt22gydDFB58sRnGKp73w1tMGmzR7mXXJK23wNLpwasr35r3Pw8fz0vnxB67fV6_JxjTTlpKAFZtRpJxauaRqjDCd9q_quZ1y01ohOM8dE33RMKKKNE5g60vVEY-MUJ9yxObg7-cZcvMzaF6u3OoZgdZEd6TjtKkNOjE4x52SdnJIfVdpLguUhcHkKXB7kIXDJ2R8mjHjC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gradient incorporation in one-dimensional applications of interpolating moving least-squares methods for fitting potential energy surfaces</title><source>Springer Online Journals Complete</source><creator>Tokmakov, Igor V. ; Wagner, Albert F. ; Minkoff, Michael ; Thompson, Donald L.</creator><creatorcontrib>Tokmakov, Igor V. ; Wagner, Albert F. ; Minkoff, Michael ; Thompson, Donald L. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We present several approaches to use gradients in higher degree interpolating moving least squares (IMLS) methods for representing a potential energy surface (PES). General procedures are developed to obtain smooth approximations of the PES and its derivatives from quasi-uniform sets of energy and gradient data points. These methods are illustrated and analyzed for the Morse oscillator and a 1-D slice of the ground-state PES for the HCO radical computed using density functional theory. Variations in the IMLS fits with the number and distribution of points and the degree of the polynomial fitting basis set are examined. We determine the effects of gradient inclusion on the accuracy of the IMLS values of the energy, first and second derivatives for two 1-D test cases. Gradient inclusion reduces the number of data points required by up to 40%.</description><identifier>ISSN: 1432-881X</identifier><identifier>EISSN: 1432-2234</identifier><identifier>DOI: 10.1007/s00214-007-0358-7</identifier><language>eng</language><publisher>United States</publisher><subject>97 ; APPROXIMATIONS ; DENSITY FUNCTIONAL METHOD ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; LEAST SQUARE FIT ; ONE-DIMENSIONAL CALCULATIONS ; OSCILLATORS ; POTENTIAL ENERGY ; RADICALS ; SURFACES</subject><ispartof>Theoretical chemistry accounts, 2007-10, Vol.118 (4), p.755-767</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-6032fcf86f444dad71b5ab9b3785ed89c3f38b4938a1cdf802f19b1c0dfa717f3</citedby><cites>FETCH-LOGICAL-c271t-6032fcf86f444dad71b5ab9b3785ed89c3f38b4938a1cdf802f19b1c0dfa717f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/919729$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tokmakov, Igor V.</creatorcontrib><creatorcontrib>Wagner, Albert F.</creatorcontrib><creatorcontrib>Minkoff, Michael</creatorcontrib><creatorcontrib>Thompson, Donald L.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Gradient incorporation in one-dimensional applications of interpolating moving least-squares methods for fitting potential energy surfaces</title><title>Theoretical chemistry accounts</title><description>We present several approaches to use gradients in higher degree interpolating moving least squares (IMLS) methods for representing a potential energy surface (PES). General procedures are developed to obtain smooth approximations of the PES and its derivatives from quasi-uniform sets of energy and gradient data points. These methods are illustrated and analyzed for the Morse oscillator and a 1-D slice of the ground-state PES for the HCO radical computed using density functional theory. Variations in the IMLS fits with the number and distribution of points and the degree of the polynomial fitting basis set are examined. We determine the effects of gradient inclusion on the accuracy of the IMLS values of the energy, first and second derivatives for two 1-D test cases. Gradient inclusion reduces the number of data points required by up to 40%.</description><subject>97</subject><subject>APPROXIMATIONS</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>LEAST SQUARE FIT</subject><subject>ONE-DIMENSIONAL CALCULATIONS</subject><subject>OSCILLATORS</subject><subject>POTENTIAL ENERGY</subject><subject>RADICALS</subject><subject>SURFACES</subject><issn>1432-881X</issn><issn>1432-2234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotkN1KAzEQhYMoWKsP4F18gGh-dpvspRStQsEbBe9CNj9tZDdZk1ToK_jUpq1Xc2bmmzNwALgl-J5gzB8yxpQ0qEqEWSsQPwMz0jCKKGXN-b8Wgnxegqucv3DFactn4HeVlPE2FOiDjmmKSRUfQ-1gDBYZP9qQ60ANUE3T4PVxnWF0FSm2Hgx1EjZwjD-HMliVC8rfO5VshqMt22gydDFB58sRnGKp73w1tMGmzR7mXXJK23wNLpwasr35r3Pw8fz0vnxB67fV6_JxjTTlpKAFZtRpJxauaRqjDCd9q_quZ1y01ohOM8dE33RMKKKNE5g60vVEY-MUJ9yxObg7-cZcvMzaF6u3OoZgdZEd6TjtKkNOjE4x52SdnJIfVdpLguUhcHkKXB7kIXDJ2R8mjHjC</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Tokmakov, Igor V.</creator><creator>Wagner, Albert F.</creator><creator>Minkoff, Michael</creator><creator>Thompson, Donald L.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20071001</creationdate><title>Gradient incorporation in one-dimensional applications of interpolating moving least-squares methods for fitting potential energy surfaces</title><author>Tokmakov, Igor V. ; Wagner, Albert F. ; Minkoff, Michael ; Thompson, Donald L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-6032fcf86f444dad71b5ab9b3785ed89c3f38b4938a1cdf802f19b1c0dfa717f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>97</topic><topic>APPROXIMATIONS</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>LEAST SQUARE FIT</topic><topic>ONE-DIMENSIONAL CALCULATIONS</topic><topic>OSCILLATORS</topic><topic>POTENTIAL ENERGY</topic><topic>RADICALS</topic><topic>SURFACES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tokmakov, Igor V.</creatorcontrib><creatorcontrib>Wagner, Albert F.</creatorcontrib><creatorcontrib>Minkoff, Michael</creatorcontrib><creatorcontrib>Thompson, Donald L.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Theoretical chemistry accounts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tokmakov, Igor V.</au><au>Wagner, Albert F.</au><au>Minkoff, Michael</au><au>Thompson, Donald L.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient incorporation in one-dimensional applications of interpolating moving least-squares methods for fitting potential energy surfaces</atitle><jtitle>Theoretical chemistry accounts</jtitle><date>2007-10-01</date><risdate>2007</risdate><volume>118</volume><issue>4</issue><spage>755</spage><epage>767</epage><pages>755-767</pages><issn>1432-881X</issn><eissn>1432-2234</eissn><abstract>We present several approaches to use gradients in higher degree interpolating moving least squares (IMLS) methods for representing a potential energy surface (PES). General procedures are developed to obtain smooth approximations of the PES and its derivatives from quasi-uniform sets of energy and gradient data points. These methods are illustrated and analyzed for the Morse oscillator and a 1-D slice of the ground-state PES for the HCO radical computed using density functional theory. Variations in the IMLS fits with the number and distribution of points and the degree of the polynomial fitting basis set are examined. We determine the effects of gradient inclusion on the accuracy of the IMLS values of the energy, first and second derivatives for two 1-D test cases. Gradient inclusion reduces the number of data points required by up to 40%.</abstract><cop>United States</cop><doi>10.1007/s00214-007-0358-7</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-881X |
ispartof | Theoretical chemistry accounts, 2007-10, Vol.118 (4), p.755-767 |
issn | 1432-881X 1432-2234 |
language | eng |
recordid | cdi_osti_scitechconnect_919729 |
source | Springer Online Journals Complete |
subjects | 97 APPROXIMATIONS DENSITY FUNCTIONAL METHOD INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY LEAST SQUARE FIT ONE-DIMENSIONAL CALCULATIONS OSCILLATORS POTENTIAL ENERGY RADICALS SURFACES |
title | Gradient incorporation in one-dimensional applications of interpolating moving least-squares methods for fitting potential energy surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20incorporation%20in%20one-dimensional%20applications%20of%20interpolating%20moving%20least-squares%20methods%20for%20fitting%20potential%20energy%20surfaces&rft.jtitle=Theoretical%20chemistry%20accounts&rft.au=Tokmakov,%20Igor%20V.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2007-10-01&rft.volume=118&rft.issue=4&rft.spage=755&rft.epage=767&rft.pages=755-767&rft.issn=1432-881X&rft.eissn=1432-2234&rft_id=info:doi/10.1007/s00214-007-0358-7&rft_dat=%3Ccrossref_osti_%3E10_1007_s00214_007_0358_7%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |