Gradient incorporation in one-dimensional applications of interpolating moving least-squares methods for fitting potential energy surfaces

We present several approaches to use gradients in higher degree interpolating moving least squares (IMLS) methods for representing a potential energy surface (PES). General procedures are developed to obtain smooth approximations of the PES and its derivatives from quasi-uniform sets of energy and g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical chemistry accounts 2007-10, Vol.118 (4), p.755-767
Hauptverfasser: Tokmakov, Igor V., Wagner, Albert F., Minkoff, Michael, Thompson, Donald L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 767
container_issue 4
container_start_page 755
container_title Theoretical chemistry accounts
container_volume 118
creator Tokmakov, Igor V.
Wagner, Albert F.
Minkoff, Michael
Thompson, Donald L.
description We present several approaches to use gradients in higher degree interpolating moving least squares (IMLS) methods for representing a potential energy surface (PES). General procedures are developed to obtain smooth approximations of the PES and its derivatives from quasi-uniform sets of energy and gradient data points. These methods are illustrated and analyzed for the Morse oscillator and a 1-D slice of the ground-state PES for the HCO radical computed using density functional theory. Variations in the IMLS fits with the number and distribution of points and the degree of the polynomial fitting basis set are examined. We determine the effects of gradient inclusion on the accuracy of the IMLS values of the energy, first and second derivatives for two 1-D test cases. Gradient inclusion reduces the number of data points required by up to 40%.
doi_str_mv 10.1007/s00214-007-0358-7
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_919729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00214_007_0358_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-6032fcf86f444dad71b5ab9b3785ed89c3f38b4938a1cdf802f19b1c0dfa717f3</originalsourceid><addsrcrecordid>eNotkN1KAzEQhYMoWKsP4F18gGh-dpvspRStQsEbBe9CNj9tZDdZk1ToK_jUpq1Xc2bmmzNwALgl-J5gzB8yxpQ0qEqEWSsQPwMz0jCKKGXN-b8Wgnxegqucv3DFactn4HeVlPE2FOiDjmmKSRUfQ-1gDBYZP9qQ60ANUE3T4PVxnWF0FSm2Hgx1EjZwjD-HMliVC8rfO5VshqMt22gydDFB58sRnGKp73w1tMGmzR7mXXJK23wNLpwasr35r3Pw8fz0vnxB67fV6_JxjTTlpKAFZtRpJxauaRqjDCd9q_quZ1y01ohOM8dE33RMKKKNE5g60vVEY-MUJ9yxObg7-cZcvMzaF6u3OoZgdZEd6TjtKkNOjE4x52SdnJIfVdpLguUhcHkKXB7kIXDJ2R8mjHjC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gradient incorporation in one-dimensional applications of interpolating moving least-squares methods for fitting potential energy surfaces</title><source>Springer Online Journals Complete</source><creator>Tokmakov, Igor V. ; Wagner, Albert F. ; Minkoff, Michael ; Thompson, Donald L.</creator><creatorcontrib>Tokmakov, Igor V. ; Wagner, Albert F. ; Minkoff, Michael ; Thompson, Donald L. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We present several approaches to use gradients in higher degree interpolating moving least squares (IMLS) methods for representing a potential energy surface (PES). General procedures are developed to obtain smooth approximations of the PES and its derivatives from quasi-uniform sets of energy and gradient data points. These methods are illustrated and analyzed for the Morse oscillator and a 1-D slice of the ground-state PES for the HCO radical computed using density functional theory. Variations in the IMLS fits with the number and distribution of points and the degree of the polynomial fitting basis set are examined. We determine the effects of gradient inclusion on the accuracy of the IMLS values of the energy, first and second derivatives for two 1-D test cases. Gradient inclusion reduces the number of data points required by up to 40%.</description><identifier>ISSN: 1432-881X</identifier><identifier>EISSN: 1432-2234</identifier><identifier>DOI: 10.1007/s00214-007-0358-7</identifier><language>eng</language><publisher>United States</publisher><subject>97 ; APPROXIMATIONS ; DENSITY FUNCTIONAL METHOD ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; LEAST SQUARE FIT ; ONE-DIMENSIONAL CALCULATIONS ; OSCILLATORS ; POTENTIAL ENERGY ; RADICALS ; SURFACES</subject><ispartof>Theoretical chemistry accounts, 2007-10, Vol.118 (4), p.755-767</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-6032fcf86f444dad71b5ab9b3785ed89c3f38b4938a1cdf802f19b1c0dfa717f3</citedby><cites>FETCH-LOGICAL-c271t-6032fcf86f444dad71b5ab9b3785ed89c3f38b4938a1cdf802f19b1c0dfa717f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/919729$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tokmakov, Igor V.</creatorcontrib><creatorcontrib>Wagner, Albert F.</creatorcontrib><creatorcontrib>Minkoff, Michael</creatorcontrib><creatorcontrib>Thompson, Donald L.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Gradient incorporation in one-dimensional applications of interpolating moving least-squares methods for fitting potential energy surfaces</title><title>Theoretical chemistry accounts</title><description>We present several approaches to use gradients in higher degree interpolating moving least squares (IMLS) methods for representing a potential energy surface (PES). General procedures are developed to obtain smooth approximations of the PES and its derivatives from quasi-uniform sets of energy and gradient data points. These methods are illustrated and analyzed for the Morse oscillator and a 1-D slice of the ground-state PES for the HCO radical computed using density functional theory. Variations in the IMLS fits with the number and distribution of points and the degree of the polynomial fitting basis set are examined. We determine the effects of gradient inclusion on the accuracy of the IMLS values of the energy, first and second derivatives for two 1-D test cases. Gradient inclusion reduces the number of data points required by up to 40%.</description><subject>97</subject><subject>APPROXIMATIONS</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>LEAST SQUARE FIT</subject><subject>ONE-DIMENSIONAL CALCULATIONS</subject><subject>OSCILLATORS</subject><subject>POTENTIAL ENERGY</subject><subject>RADICALS</subject><subject>SURFACES</subject><issn>1432-881X</issn><issn>1432-2234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotkN1KAzEQhYMoWKsP4F18gGh-dpvspRStQsEbBe9CNj9tZDdZk1ToK_jUpq1Xc2bmmzNwALgl-J5gzB8yxpQ0qEqEWSsQPwMz0jCKKGXN-b8Wgnxegqucv3DFactn4HeVlPE2FOiDjmmKSRUfQ-1gDBYZP9qQ60ANUE3T4PVxnWF0FSm2Hgx1EjZwjD-HMliVC8rfO5VshqMt22gydDFB58sRnGKp73w1tMGmzR7mXXJK23wNLpwasr35r3Pw8fz0vnxB67fV6_JxjTTlpKAFZtRpJxauaRqjDCd9q_quZ1y01ohOM8dE33RMKKKNE5g60vVEY-MUJ9yxObg7-cZcvMzaF6u3OoZgdZEd6TjtKkNOjE4x52SdnJIfVdpLguUhcHkKXB7kIXDJ2R8mjHjC</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Tokmakov, Igor V.</creator><creator>Wagner, Albert F.</creator><creator>Minkoff, Michael</creator><creator>Thompson, Donald L.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20071001</creationdate><title>Gradient incorporation in one-dimensional applications of interpolating moving least-squares methods for fitting potential energy surfaces</title><author>Tokmakov, Igor V. ; Wagner, Albert F. ; Minkoff, Michael ; Thompson, Donald L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-6032fcf86f444dad71b5ab9b3785ed89c3f38b4938a1cdf802f19b1c0dfa717f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>97</topic><topic>APPROXIMATIONS</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>LEAST SQUARE FIT</topic><topic>ONE-DIMENSIONAL CALCULATIONS</topic><topic>OSCILLATORS</topic><topic>POTENTIAL ENERGY</topic><topic>RADICALS</topic><topic>SURFACES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tokmakov, Igor V.</creatorcontrib><creatorcontrib>Wagner, Albert F.</creatorcontrib><creatorcontrib>Minkoff, Michael</creatorcontrib><creatorcontrib>Thompson, Donald L.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Theoretical chemistry accounts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tokmakov, Igor V.</au><au>Wagner, Albert F.</au><au>Minkoff, Michael</au><au>Thompson, Donald L.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient incorporation in one-dimensional applications of interpolating moving least-squares methods for fitting potential energy surfaces</atitle><jtitle>Theoretical chemistry accounts</jtitle><date>2007-10-01</date><risdate>2007</risdate><volume>118</volume><issue>4</issue><spage>755</spage><epage>767</epage><pages>755-767</pages><issn>1432-881X</issn><eissn>1432-2234</eissn><abstract>We present several approaches to use gradients in higher degree interpolating moving least squares (IMLS) methods for representing a potential energy surface (PES). General procedures are developed to obtain smooth approximations of the PES and its derivatives from quasi-uniform sets of energy and gradient data points. These methods are illustrated and analyzed for the Morse oscillator and a 1-D slice of the ground-state PES for the HCO radical computed using density functional theory. Variations in the IMLS fits with the number and distribution of points and the degree of the polynomial fitting basis set are examined. We determine the effects of gradient inclusion on the accuracy of the IMLS values of the energy, first and second derivatives for two 1-D test cases. Gradient inclusion reduces the number of data points required by up to 40%.</abstract><cop>United States</cop><doi>10.1007/s00214-007-0358-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-881X
ispartof Theoretical chemistry accounts, 2007-10, Vol.118 (4), p.755-767
issn 1432-881X
1432-2234
language eng
recordid cdi_osti_scitechconnect_919729
source Springer Online Journals Complete
subjects 97
APPROXIMATIONS
DENSITY FUNCTIONAL METHOD
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
LEAST SQUARE FIT
ONE-DIMENSIONAL CALCULATIONS
OSCILLATORS
POTENTIAL ENERGY
RADICALS
SURFACES
title Gradient incorporation in one-dimensional applications of interpolating moving least-squares methods for fitting potential energy surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20incorporation%20in%20one-dimensional%20applications%20of%20interpolating%20moving%20least-squares%20methods%20for%20fitting%20potential%20energy%20surfaces&rft.jtitle=Theoretical%20chemistry%20accounts&rft.au=Tokmakov,%20Igor%20V.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2007-10-01&rft.volume=118&rft.issue=4&rft.spage=755&rft.epage=767&rft.pages=755-767&rft.issn=1432-881X&rft.eissn=1432-2234&rft_id=info:doi/10.1007/s00214-007-0358-7&rft_dat=%3Ccrossref_osti_%3E10_1007_s00214_007_0358_7%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true