Investigation of high-spin states in 53Fe
The fusion-evaporation reactions 28Si(32S,1{alpha}2p1n)53Fe at 125 MeV and 24Mg(32S,2p1n)53Fe at a 95-MeV beam energy were used to investigate excited states in 53Fe. The combination of the Gammasphere Ge detector array and ancillary devices led to the construction of an extensive level scheme compr...
Gespeichert in:
Veröffentlicht in: | Physical review. C, Nuclear physics Nuclear physics, 2006-04, Vol.72 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fusion-evaporation reactions 28Si(32S,1{alpha}2p1n)53Fe at 125 MeV and 24Mg(32S,2p1n)53Fe at a 95-MeV beam energy were used to investigate excited states in 53Fe. The combination of the Gammasphere Ge detector array and ancillary devices led to the construction of an extensive level scheme comprising some 90 transitions connecting 40 states. The lifetime of the yrast 25/2- state and upper limits for the lifetimes of a number of additional states were determined using the Cologne plunger device coupled to the GASP {gamma}-ray spectrometer. The experimental results are compared to large-scale shell-model calculations using different sets of two-body matrix elements. In particular, predictions on electromagnetic decay properties such as lifetimes, branching ratios, and mixing ratios are studied in detail. |
---|---|
ISSN: | 0556-2813 1089-490X |