Oxygen reactivity of a carbon fiber composite

Carbon Fiber Composites (CFCs) are often suggested as armor material for the first wall of a fusion plasma chamber due to carbon's low atomic number, high thermal conductivity, and high melting point. However, carbon is chemically reactive in air and will react with ingress air during a Loss of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2003-09, Vol.69 (1), p.663-667
Hauptverfasser: Marshall, T.D, Pawelko, R.J, Anderl, R.A, Smolik, G.R, Merrill, B.J, Moore, R.L, Petti, D.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 667
container_issue 1
container_start_page 663
container_title Fusion engineering and design
container_volume 69
creator Marshall, T.D
Pawelko, R.J
Anderl, R.A
Smolik, G.R
Merrill, B.J
Moore, R.L
Petti, D.A
description Carbon Fiber Composites (CFCs) are often suggested as armor material for the first wall of a fusion plasma chamber due to carbon's low atomic number, high thermal conductivity, and high melting point. However, carbon is chemically reactive in air and will react with ingress air during a Loss of Vacuum Accident and release tritium fuel that has been retained in the carbon. Tritium mobilization and carbon monoxide generation via CFC oxidation are both safety concerns. This paper discusses chemical reactivity experiments that were performed using the state-of-the-art 3-dimensional NB31 CFC produced by SNECMA and a laminar reaction gas of Ar–21 vol% O 2. Oxidation reaction rates were measured for CFC temperatures of 525, 600, 700, 800, 900, and 1000 °C and a 100 standard cubic centimeters per minute (sccm) Ar–O 2 flow rate. Experiments were also performed at CFC temperatures of 700 and 1000 °C and a 1000 sccm Ar–O 2 flow rate. Mass spectral analyses of the exhaust reaction gas suggested that carbon monoxide was the primary reaction at the CFC surface and carbon dioxide was readily produced in the exiting reaction gas. The measured reaction rates compare well with the literature and were used to produce a CFC oxidation curve that is recommended for use in fusion safety analyses.
doi_str_mv 10.1016/S0920-3796(03)00204-7
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_911598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379603002047</els_id><sourcerecordid>28073586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-139557fb1e6be91bc8d217c98bb55a709550a0a66a222a9054895e9a16e907963</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QVgPih5WZzbNZnMSKX5BoQf1HLLprEbaTU22xf57d7tFj0JgDnlm3peHsVOEawTMb15AZZByqfJL4FcAGYxSuccGWEieSlT5Phv8IofsKMZPAJTtG7B0-r15pzoJZGzj1q7ZJL5KTGJNKH2dVK6kkFi_WProGjpmB5WZRzrZzSF7e7h_HT-lk-nj8_huktrRCJsUuRJCViVSXpLC0hazDKVVRVkKYSS0v2DA5LnJsswoEKNCCVIGc1LQduRDdtbf9bFxOto22n5YX9dkG60QhSpa5qJnlsF_rSg2euGipfnc1ORXUWcFSC6K7pjoQRt8jIEqvQxuYcJGI-hOoN4K1J0dDVxvBWrZ7p3vAky0Zl4FU1sX_5YFIpe84257jloja0ehK0y1pZkLXd-Zd_8k_QC-3YIP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28073586</pqid></control><display><type>article</type><title>Oxygen reactivity of a carbon fiber composite</title><source>Access via ScienceDirect (Elsevier)</source><creator>Marshall, T.D ; Pawelko, R.J ; Anderl, R.A ; Smolik, G.R ; Merrill, B.J ; Moore, R.L ; Petti, D.A</creator><creatorcontrib>Marshall, T.D ; Pawelko, R.J ; Anderl, R.A ; Smolik, G.R ; Merrill, B.J ; Moore, R.L ; Petti, D.A ; Idaho National Laboratory (INL)</creatorcontrib><description>Carbon Fiber Composites (CFCs) are often suggested as armor material for the first wall of a fusion plasma chamber due to carbon's low atomic number, high thermal conductivity, and high melting point. However, carbon is chemically reactive in air and will react with ingress air during a Loss of Vacuum Accident and release tritium fuel that has been retained in the carbon. Tritium mobilization and carbon monoxide generation via CFC oxidation are both safety concerns. This paper discusses chemical reactivity experiments that were performed using the state-of-the-art 3-dimensional NB31 CFC produced by SNECMA and a laminar reaction gas of Ar–21 vol% O 2. Oxidation reaction rates were measured for CFC temperatures of 525, 600, 700, 800, 900, and 1000 °C and a 100 standard cubic centimeters per minute (sccm) Ar–O 2 flow rate. Experiments were also performed at CFC temperatures of 700 and 1000 °C and a 1000 sccm Ar–O 2 flow rate. Mass spectral analyses of the exhaust reaction gas suggested that carbon monoxide was the primary reaction at the CFC surface and carbon dioxide was readily produced in the exiting reaction gas. The measured reaction rates compare well with the literature and were used to produce a CFC oxidation curve that is recommended for use in fusion safety analyses.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/S0920-3796(03)00204-7</identifier><identifier>CODEN: FEDEEE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; ARMOR ; ATOMIC NUMBER ; CARBON ; CARBON DIOXIDE ; CARBON FIBERS ; CARBON MONOXIDE ; Carbon oxidation ; CFC oxidation ; CHLOROFLUOROCARBONS ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; FIRST WALL ; FLOW RATE ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Installations for energy generation and conversion: thermal and electrical energy ; MELTING POINTS ; OXIDATION ; Oxidation experiment ; OXYGEN ; PLASMA ; REACTION KINETICS ; SAFETY ; THERMAL CONDUCTIVITY ; TRITIUM</subject><ispartof>Fusion engineering and design, 2003-09, Vol.69 (1), p.663-667</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-139557fb1e6be91bc8d217c98bb55a709550a0a66a222a9054895e9a16e907963</citedby><cites>FETCH-LOGICAL-c441t-139557fb1e6be91bc8d217c98bb55a709550a0a66a222a9054895e9a16e907963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0920-3796(03)00204-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15113737$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/911598$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Marshall, T.D</creatorcontrib><creatorcontrib>Pawelko, R.J</creatorcontrib><creatorcontrib>Anderl, R.A</creatorcontrib><creatorcontrib>Smolik, G.R</creatorcontrib><creatorcontrib>Merrill, B.J</creatorcontrib><creatorcontrib>Moore, R.L</creatorcontrib><creatorcontrib>Petti, D.A</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><title>Oxygen reactivity of a carbon fiber composite</title><title>Fusion engineering and design</title><description>Carbon Fiber Composites (CFCs) are often suggested as armor material for the first wall of a fusion plasma chamber due to carbon's low atomic number, high thermal conductivity, and high melting point. However, carbon is chemically reactive in air and will react with ingress air during a Loss of Vacuum Accident and release tritium fuel that has been retained in the carbon. Tritium mobilization and carbon monoxide generation via CFC oxidation are both safety concerns. This paper discusses chemical reactivity experiments that were performed using the state-of-the-art 3-dimensional NB31 CFC produced by SNECMA and a laminar reaction gas of Ar–21 vol% O 2. Oxidation reaction rates were measured for CFC temperatures of 525, 600, 700, 800, 900, and 1000 °C and a 100 standard cubic centimeters per minute (sccm) Ar–O 2 flow rate. Experiments were also performed at CFC temperatures of 700 and 1000 °C and a 1000 sccm Ar–O 2 flow rate. Mass spectral analyses of the exhaust reaction gas suggested that carbon monoxide was the primary reaction at the CFC surface and carbon dioxide was readily produced in the exiting reaction gas. The measured reaction rates compare well with the literature and were used to produce a CFC oxidation curve that is recommended for use in fusion safety analyses.</description><subject>Applied sciences</subject><subject>ARMOR</subject><subject>ATOMIC NUMBER</subject><subject>CARBON</subject><subject>CARBON DIOXIDE</subject><subject>CARBON FIBERS</subject><subject>CARBON MONOXIDE</subject><subject>Carbon oxidation</subject><subject>CFC oxidation</subject><subject>CHLOROFLUOROCARBONS</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>FIRST WALL</subject><subject>FLOW RATE</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>MELTING POINTS</subject><subject>OXIDATION</subject><subject>Oxidation experiment</subject><subject>OXYGEN</subject><subject>PLASMA</subject><subject>REACTION KINETICS</subject><subject>SAFETY</subject><subject>THERMAL CONDUCTIVITY</subject><subject>TRITIUM</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QVgPih5WZzbNZnMSKX5BoQf1HLLprEbaTU22xf57d7tFj0JgDnlm3peHsVOEawTMb15AZZByqfJL4FcAGYxSuccGWEieSlT5Phv8IofsKMZPAJTtG7B0-r15pzoJZGzj1q7ZJL5KTGJNKH2dVK6kkFi_WProGjpmB5WZRzrZzSF7e7h_HT-lk-nj8_huktrRCJsUuRJCViVSXpLC0hazDKVVRVkKYSS0v2DA5LnJsswoEKNCCVIGc1LQduRDdtbf9bFxOto22n5YX9dkG60QhSpa5qJnlsF_rSg2euGipfnc1ORXUWcFSC6K7pjoQRt8jIEqvQxuYcJGI-hOoN4K1J0dDVxvBWrZ7p3vAky0Zl4FU1sX_5YFIpe84257jloja0ehK0y1pZkLXd-Zd_8k_QC-3YIP</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Marshall, T.D</creator><creator>Pawelko, R.J</creator><creator>Anderl, R.A</creator><creator>Smolik, G.R</creator><creator>Merrill, B.J</creator><creator>Moore, R.L</creator><creator>Petti, D.A</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20030901</creationdate><title>Oxygen reactivity of a carbon fiber composite</title><author>Marshall, T.D ; Pawelko, R.J ; Anderl, R.A ; Smolik, G.R ; Merrill, B.J ; Moore, R.L ; Petti, D.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-139557fb1e6be91bc8d217c98bb55a709550a0a66a222a9054895e9a16e907963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>ARMOR</topic><topic>ATOMIC NUMBER</topic><topic>CARBON</topic><topic>CARBON DIOXIDE</topic><topic>CARBON FIBERS</topic><topic>CARBON MONOXIDE</topic><topic>Carbon oxidation</topic><topic>CFC oxidation</topic><topic>CHLOROFLUOROCARBONS</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>FIRST WALL</topic><topic>FLOW RATE</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>MELTING POINTS</topic><topic>OXIDATION</topic><topic>Oxidation experiment</topic><topic>OXYGEN</topic><topic>PLASMA</topic><topic>REACTION KINETICS</topic><topic>SAFETY</topic><topic>THERMAL CONDUCTIVITY</topic><topic>TRITIUM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marshall, T.D</creatorcontrib><creatorcontrib>Pawelko, R.J</creatorcontrib><creatorcontrib>Anderl, R.A</creatorcontrib><creatorcontrib>Smolik, G.R</creatorcontrib><creatorcontrib>Merrill, B.J</creatorcontrib><creatorcontrib>Moore, R.L</creatorcontrib><creatorcontrib>Petti, D.A</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marshall, T.D</au><au>Pawelko, R.J</au><au>Anderl, R.A</au><au>Smolik, G.R</au><au>Merrill, B.J</au><au>Moore, R.L</au><au>Petti, D.A</au><aucorp>Idaho National Laboratory (INL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen reactivity of a carbon fiber composite</atitle><jtitle>Fusion engineering and design</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>69</volume><issue>1</issue><spage>663</spage><epage>667</epage><pages>663-667</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><coden>FEDEEE</coden><abstract>Carbon Fiber Composites (CFCs) are often suggested as armor material for the first wall of a fusion plasma chamber due to carbon's low atomic number, high thermal conductivity, and high melting point. However, carbon is chemically reactive in air and will react with ingress air during a Loss of Vacuum Accident and release tritium fuel that has been retained in the carbon. Tritium mobilization and carbon monoxide generation via CFC oxidation are both safety concerns. This paper discusses chemical reactivity experiments that were performed using the state-of-the-art 3-dimensional NB31 CFC produced by SNECMA and a laminar reaction gas of Ar–21 vol% O 2. Oxidation reaction rates were measured for CFC temperatures of 525, 600, 700, 800, 900, and 1000 °C and a 100 standard cubic centimeters per minute (sccm) Ar–O 2 flow rate. Experiments were also performed at CFC temperatures of 700 and 1000 °C and a 1000 sccm Ar–O 2 flow rate. Mass spectral analyses of the exhaust reaction gas suggested that carbon monoxide was the primary reaction at the CFC surface and carbon dioxide was readily produced in the exiting reaction gas. The measured reaction rates compare well with the literature and were used to produce a CFC oxidation curve that is recommended for use in fusion safety analyses.</abstract><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/S0920-3796(03)00204-7</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0920-3796
ispartof Fusion engineering and design, 2003-09, Vol.69 (1), p.663-667
issn 0920-3796
1873-7196
language eng
recordid cdi_osti_scitechconnect_911598
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
ARMOR
ATOMIC NUMBER
CARBON
CARBON DIOXIDE
CARBON FIBERS
CARBON MONOXIDE
Carbon oxidation
CFC oxidation
CHLOROFLUOROCARBONS
Controled nuclear fusion plants
Energy
Energy. Thermal use of fuels
Exact sciences and technology
FIRST WALL
FLOW RATE
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
Installations for energy generation and conversion: thermal and electrical energy
MELTING POINTS
OXIDATION
Oxidation experiment
OXYGEN
PLASMA
REACTION KINETICS
SAFETY
THERMAL CONDUCTIVITY
TRITIUM
title Oxygen reactivity of a carbon fiber composite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20reactivity%20of%20a%20carbon%20fiber%20composite&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Marshall,%20T.D&rft.aucorp=Idaho%20National%20Laboratory%20(INL)&rft.date=2003-09-01&rft.volume=69&rft.issue=1&rft.spage=663&rft.epage=667&rft.pages=663-667&rft.issn=0920-3796&rft.eissn=1873-7196&rft.coden=FEDEEE&rft_id=info:doi/10.1016/S0920-3796(03)00204-7&rft_dat=%3Cproquest_osti_%3E28073586%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28073586&rft_id=info:pmid/&rft_els_id=S0920379603002047&rfr_iscdi=true