Oxygen reactivity of a carbon fiber composite
Carbon Fiber Composites (CFCs) are often suggested as armor material for the first wall of a fusion plasma chamber due to carbon's low atomic number, high thermal conductivity, and high melting point. However, carbon is chemically reactive in air and will react with ingress air during a Loss of...
Gespeichert in:
Veröffentlicht in: | Fusion engineering and design 2003-09, Vol.69 (1), p.663-667 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 667 |
---|---|
container_issue | 1 |
container_start_page | 663 |
container_title | Fusion engineering and design |
container_volume | 69 |
creator | Marshall, T.D Pawelko, R.J Anderl, R.A Smolik, G.R Merrill, B.J Moore, R.L Petti, D.A |
description | Carbon Fiber Composites (CFCs) are often suggested as armor material for the first wall of a fusion plasma chamber due to carbon's low atomic number, high thermal conductivity, and high melting point. However, carbon is chemically reactive in air and will react with ingress air during a Loss of Vacuum Accident and release tritium fuel that has been retained in the carbon. Tritium mobilization and carbon monoxide generation via CFC oxidation are both safety concerns. This paper discusses chemical reactivity experiments that were performed using the state-of-the-art 3-dimensional NB31 CFC produced by SNECMA and a laminar reaction gas of Ar–21 vol% O
2. Oxidation reaction rates were measured for CFC temperatures of 525, 600, 700, 800, 900, and 1000
°C and a 100 standard cubic centimeters per minute (sccm) Ar–O
2 flow rate. Experiments were also performed at CFC temperatures of 700 and 1000
°C and a 1000 sccm Ar–O
2 flow rate. Mass spectral analyses of the exhaust reaction gas suggested that carbon monoxide was the primary reaction at the CFC surface and carbon dioxide was readily produced in the exiting reaction gas. The measured reaction rates compare well with the literature and were used to produce a CFC oxidation curve that is recommended for use in fusion safety analyses. |
doi_str_mv | 10.1016/S0920-3796(03)00204-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_911598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379603002047</els_id><sourcerecordid>28073586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-139557fb1e6be91bc8d217c98bb55a709550a0a66a222a9054895e9a16e907963</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QVgPih5WZzbNZnMSKX5BoQf1HLLprEbaTU22xf57d7tFj0JgDnlm3peHsVOEawTMb15AZZByqfJL4FcAGYxSuccGWEieSlT5Phv8IofsKMZPAJTtG7B0-r15pzoJZGzj1q7ZJL5KTGJNKH2dVK6kkFi_WProGjpmB5WZRzrZzSF7e7h_HT-lk-nj8_huktrRCJsUuRJCViVSXpLC0hazDKVVRVkKYSS0v2DA5LnJsswoEKNCCVIGc1LQduRDdtbf9bFxOto22n5YX9dkG60QhSpa5qJnlsF_rSg2euGipfnc1ORXUWcFSC6K7pjoQRt8jIEqvQxuYcJGI-hOoN4K1J0dDVxvBWrZ7p3vAky0Zl4FU1sX_5YFIpe84257jloja0ehK0y1pZkLXd-Zd_8k_QC-3YIP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28073586</pqid></control><display><type>article</type><title>Oxygen reactivity of a carbon fiber composite</title><source>Access via ScienceDirect (Elsevier)</source><creator>Marshall, T.D ; Pawelko, R.J ; Anderl, R.A ; Smolik, G.R ; Merrill, B.J ; Moore, R.L ; Petti, D.A</creator><creatorcontrib>Marshall, T.D ; Pawelko, R.J ; Anderl, R.A ; Smolik, G.R ; Merrill, B.J ; Moore, R.L ; Petti, D.A ; Idaho National Laboratory (INL)</creatorcontrib><description>Carbon Fiber Composites (CFCs) are often suggested as armor material for the first wall of a fusion plasma chamber due to carbon's low atomic number, high thermal conductivity, and high melting point. However, carbon is chemically reactive in air and will react with ingress air during a Loss of Vacuum Accident and release tritium fuel that has been retained in the carbon. Tritium mobilization and carbon monoxide generation via CFC oxidation are both safety concerns. This paper discusses chemical reactivity experiments that were performed using the state-of-the-art 3-dimensional NB31 CFC produced by SNECMA and a laminar reaction gas of Ar–21 vol% O
2. Oxidation reaction rates were measured for CFC temperatures of 525, 600, 700, 800, 900, and 1000
°C and a 100 standard cubic centimeters per minute (sccm) Ar–O
2 flow rate. Experiments were also performed at CFC temperatures of 700 and 1000
°C and a 1000 sccm Ar–O
2 flow rate. Mass spectral analyses of the exhaust reaction gas suggested that carbon monoxide was the primary reaction at the CFC surface and carbon dioxide was readily produced in the exiting reaction gas. The measured reaction rates compare well with the literature and were used to produce a CFC oxidation curve that is recommended for use in fusion safety analyses.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/S0920-3796(03)00204-7</identifier><identifier>CODEN: FEDEEE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; ARMOR ; ATOMIC NUMBER ; CARBON ; CARBON DIOXIDE ; CARBON FIBERS ; CARBON MONOXIDE ; Carbon oxidation ; CFC oxidation ; CHLOROFLUOROCARBONS ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; FIRST WALL ; FLOW RATE ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Installations for energy generation and conversion: thermal and electrical energy ; MELTING POINTS ; OXIDATION ; Oxidation experiment ; OXYGEN ; PLASMA ; REACTION KINETICS ; SAFETY ; THERMAL CONDUCTIVITY ; TRITIUM</subject><ispartof>Fusion engineering and design, 2003-09, Vol.69 (1), p.663-667</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-139557fb1e6be91bc8d217c98bb55a709550a0a66a222a9054895e9a16e907963</citedby><cites>FETCH-LOGICAL-c441t-139557fb1e6be91bc8d217c98bb55a709550a0a66a222a9054895e9a16e907963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0920-3796(03)00204-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15113737$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/911598$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Marshall, T.D</creatorcontrib><creatorcontrib>Pawelko, R.J</creatorcontrib><creatorcontrib>Anderl, R.A</creatorcontrib><creatorcontrib>Smolik, G.R</creatorcontrib><creatorcontrib>Merrill, B.J</creatorcontrib><creatorcontrib>Moore, R.L</creatorcontrib><creatorcontrib>Petti, D.A</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><title>Oxygen reactivity of a carbon fiber composite</title><title>Fusion engineering and design</title><description>Carbon Fiber Composites (CFCs) are often suggested as armor material for the first wall of a fusion plasma chamber due to carbon's low atomic number, high thermal conductivity, and high melting point. However, carbon is chemically reactive in air and will react with ingress air during a Loss of Vacuum Accident and release tritium fuel that has been retained in the carbon. Tritium mobilization and carbon monoxide generation via CFC oxidation are both safety concerns. This paper discusses chemical reactivity experiments that were performed using the state-of-the-art 3-dimensional NB31 CFC produced by SNECMA and a laminar reaction gas of Ar–21 vol% O
2. Oxidation reaction rates were measured for CFC temperatures of 525, 600, 700, 800, 900, and 1000
°C and a 100 standard cubic centimeters per minute (sccm) Ar–O
2 flow rate. Experiments were also performed at CFC temperatures of 700 and 1000
°C and a 1000 sccm Ar–O
2 flow rate. Mass spectral analyses of the exhaust reaction gas suggested that carbon monoxide was the primary reaction at the CFC surface and carbon dioxide was readily produced in the exiting reaction gas. The measured reaction rates compare well with the literature and were used to produce a CFC oxidation curve that is recommended for use in fusion safety analyses.</description><subject>Applied sciences</subject><subject>ARMOR</subject><subject>ATOMIC NUMBER</subject><subject>CARBON</subject><subject>CARBON DIOXIDE</subject><subject>CARBON FIBERS</subject><subject>CARBON MONOXIDE</subject><subject>Carbon oxidation</subject><subject>CFC oxidation</subject><subject>CHLOROFLUOROCARBONS</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>FIRST WALL</subject><subject>FLOW RATE</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>MELTING POINTS</subject><subject>OXIDATION</subject><subject>Oxidation experiment</subject><subject>OXYGEN</subject><subject>PLASMA</subject><subject>REACTION KINETICS</subject><subject>SAFETY</subject><subject>THERMAL CONDUCTIVITY</subject><subject>TRITIUM</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QVgPih5WZzbNZnMSKX5BoQf1HLLprEbaTU22xf57d7tFj0JgDnlm3peHsVOEawTMb15AZZByqfJL4FcAGYxSuccGWEieSlT5Phv8IofsKMZPAJTtG7B0-r15pzoJZGzj1q7ZJL5KTGJNKH2dVK6kkFi_WProGjpmB5WZRzrZzSF7e7h_HT-lk-nj8_huktrRCJsUuRJCViVSXpLC0hazDKVVRVkKYSS0v2DA5LnJsswoEKNCCVIGc1LQduRDdtbf9bFxOto22n5YX9dkG60QhSpa5qJnlsF_rSg2euGipfnc1ORXUWcFSC6K7pjoQRt8jIEqvQxuYcJGI-hOoN4K1J0dDVxvBWrZ7p3vAky0Zl4FU1sX_5YFIpe84257jloja0ehK0y1pZkLXd-Zd_8k_QC-3YIP</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Marshall, T.D</creator><creator>Pawelko, R.J</creator><creator>Anderl, R.A</creator><creator>Smolik, G.R</creator><creator>Merrill, B.J</creator><creator>Moore, R.L</creator><creator>Petti, D.A</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20030901</creationdate><title>Oxygen reactivity of a carbon fiber composite</title><author>Marshall, T.D ; Pawelko, R.J ; Anderl, R.A ; Smolik, G.R ; Merrill, B.J ; Moore, R.L ; Petti, D.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-139557fb1e6be91bc8d217c98bb55a709550a0a66a222a9054895e9a16e907963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>ARMOR</topic><topic>ATOMIC NUMBER</topic><topic>CARBON</topic><topic>CARBON DIOXIDE</topic><topic>CARBON FIBERS</topic><topic>CARBON MONOXIDE</topic><topic>Carbon oxidation</topic><topic>CFC oxidation</topic><topic>CHLOROFLUOROCARBONS</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>FIRST WALL</topic><topic>FLOW RATE</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>MELTING POINTS</topic><topic>OXIDATION</topic><topic>Oxidation experiment</topic><topic>OXYGEN</topic><topic>PLASMA</topic><topic>REACTION KINETICS</topic><topic>SAFETY</topic><topic>THERMAL CONDUCTIVITY</topic><topic>TRITIUM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marshall, T.D</creatorcontrib><creatorcontrib>Pawelko, R.J</creatorcontrib><creatorcontrib>Anderl, R.A</creatorcontrib><creatorcontrib>Smolik, G.R</creatorcontrib><creatorcontrib>Merrill, B.J</creatorcontrib><creatorcontrib>Moore, R.L</creatorcontrib><creatorcontrib>Petti, D.A</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marshall, T.D</au><au>Pawelko, R.J</au><au>Anderl, R.A</au><au>Smolik, G.R</au><au>Merrill, B.J</au><au>Moore, R.L</au><au>Petti, D.A</au><aucorp>Idaho National Laboratory (INL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen reactivity of a carbon fiber composite</atitle><jtitle>Fusion engineering and design</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>69</volume><issue>1</issue><spage>663</spage><epage>667</epage><pages>663-667</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><coden>FEDEEE</coden><abstract>Carbon Fiber Composites (CFCs) are often suggested as armor material for the first wall of a fusion plasma chamber due to carbon's low atomic number, high thermal conductivity, and high melting point. However, carbon is chemically reactive in air and will react with ingress air during a Loss of Vacuum Accident and release tritium fuel that has been retained in the carbon. Tritium mobilization and carbon monoxide generation via CFC oxidation are both safety concerns. This paper discusses chemical reactivity experiments that were performed using the state-of-the-art 3-dimensional NB31 CFC produced by SNECMA and a laminar reaction gas of Ar–21 vol% O
2. Oxidation reaction rates were measured for CFC temperatures of 525, 600, 700, 800, 900, and 1000
°C and a 100 standard cubic centimeters per minute (sccm) Ar–O
2 flow rate. Experiments were also performed at CFC temperatures of 700 and 1000
°C and a 1000 sccm Ar–O
2 flow rate. Mass spectral analyses of the exhaust reaction gas suggested that carbon monoxide was the primary reaction at the CFC surface and carbon dioxide was readily produced in the exiting reaction gas. The measured reaction rates compare well with the literature and were used to produce a CFC oxidation curve that is recommended for use in fusion safety analyses.</abstract><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/S0920-3796(03)00204-7</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-3796 |
ispartof | Fusion engineering and design, 2003-09, Vol.69 (1), p.663-667 |
issn | 0920-3796 1873-7196 |
language | eng |
recordid | cdi_osti_scitechconnect_911598 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences ARMOR ATOMIC NUMBER CARBON CARBON DIOXIDE CARBON FIBERS CARBON MONOXIDE Carbon oxidation CFC oxidation CHLOROFLUOROCARBONS Controled nuclear fusion plants Energy Energy. Thermal use of fuels Exact sciences and technology FIRST WALL FLOW RATE GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE Installations for energy generation and conversion: thermal and electrical energy MELTING POINTS OXIDATION Oxidation experiment OXYGEN PLASMA REACTION KINETICS SAFETY THERMAL CONDUCTIVITY TRITIUM |
title | Oxygen reactivity of a carbon fiber composite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20reactivity%20of%20a%20carbon%20fiber%20composite&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Marshall,%20T.D&rft.aucorp=Idaho%20National%20Laboratory%20(INL)&rft.date=2003-09-01&rft.volume=69&rft.issue=1&rft.spage=663&rft.epage=667&rft.pages=663-667&rft.issn=0920-3796&rft.eissn=1873-7196&rft.coden=FEDEEE&rft_id=info:doi/10.1016/S0920-3796(03)00204-7&rft_dat=%3Cproquest_osti_%3E28073586%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28073586&rft_id=info:pmid/&rft_els_id=S0920379603002047&rfr_iscdi=true |