Raman analysis of nitrogen doped ZnO
The mechanism of nitrogen doping is essential for making p-type ZnO. This paper demonstrates that Raman characterization is a potentially powerful tool to study the mechanism of nitrogen doping. We have observed new Raman features near 280, 510, 570, 642, 773, 1360 and 1565 cm − 1 shift in nitrogen...
Gespeichert in:
Veröffentlicht in: | Thin solid films 2007-05, Vol.515 (13), p.5282-5286 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5286 |
---|---|
container_issue | 13 |
container_start_page | 5282 |
container_title | Thin solid films |
container_volume | 515 |
creator | Kerr, Lei L. Li, Xiaonan Canepa, Marina Sommer, Andre J. |
description | The mechanism of nitrogen doping is essential for making
p-type ZnO. This paper demonstrates that Raman characterization is a potentially powerful tool to study the mechanism of nitrogen doping. We have observed new Raman features near 280, 510, 570, 642, 773, 1360 and 1565 cm
−
1
shift in nitrogen doped ZnO (ZnO:N) thin films compared with undoped ZnO films. Peaks at 280, 510, 570, 642, and 773 cm
−
1
are attributed to the nitrogen related defect complex. The Raman peaks at 1360 cm
−
1
and 1565 cm
−
1
shift are assigned to D—(disordered) and G—(Graphitic) bands associated with the carbon-related defect complex, respectively. The intensity and the intensity ratio of peaks at 1360 cm
−
1
and 1565 cm
−
1
have been found to be sensitive parameters that reflect the conductivity type of ZnO:N. Explanations are presented which correlate the Raman features to the electric conductivity of the films. From this analysis, we found that at temperature lower than or at 400 °C, nitrogen incorporation will form the nitrogen or possible nitrogen carbon related defect complex. As the growth temperature increases to 500 °C, the features associated with nitrogen are difficult to distinguish and the features associated to carbon begin to emerge. This observation possibly indicates the decrease of the nitrogen content and the increase of the carbon content in the ZnO:N film. The increase of carbon content may affect the donor behavior of the film. This observation suggests that growth conditions should be controlled to avoid carbon into the film. |
doi_str_mv | 10.1016/j.tsf.2006.12.186 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_908006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609007000053</els_id><sourcerecordid>S0040609007000053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-632d2546567e7cbceae127878c8e4381989b0ec1ab1baf92972c456bc91461553</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8V9Ng6k7T5wJMsfsHCgujFS0jTVLPspiUpwv57Wyp48zSX55155yHkEqFAQH67LYbUFhSAF0gLlPyILFAKlVPB8JgsAErIOSg4JWcpbQEAKWULcv1q9iZkJpjdIfmUdW0W_BC7Txeyputdk32EzTk5ac0uuYvfuSTvjw9vq-d8vXl6Wd2vc8sqNuSc0YZWJa-4cMLW1hmHVEghrXQlk6ikqsFZNDXWplVUCWrLitdWYcmxqtiSXM17uzR4nawfnP2yXQjODlqBHL8bGZwZG7uUomt1H_3exING0JMKvdWjCj2p0Ej1qGLM3MyZ3iRrdm00wfr0F5RcMMYn7m7m3Pjkt3dx6uCCdY2PU4Wm8_9c-QEkT3E2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Raman analysis of nitrogen doped ZnO</title><source>Elsevier ScienceDirect Journals</source><creator>Kerr, Lei L. ; Li, Xiaonan ; Canepa, Marina ; Sommer, Andre J.</creator><creatorcontrib>Kerr, Lei L. ; Li, Xiaonan ; Canepa, Marina ; Sommer, Andre J. ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>The mechanism of nitrogen doping is essential for making
p-type ZnO. This paper demonstrates that Raman characterization is a potentially powerful tool to study the mechanism of nitrogen doping. We have observed new Raman features near 280, 510, 570, 642, 773, 1360 and 1565 cm
−
1
shift in nitrogen doped ZnO (ZnO:N) thin films compared with undoped ZnO films. Peaks at 280, 510, 570, 642, and 773 cm
−
1
are attributed to the nitrogen related defect complex. The Raman peaks at 1360 cm
−
1
and 1565 cm
−
1
shift are assigned to D—(disordered) and G—(Graphitic) bands associated with the carbon-related defect complex, respectively. The intensity and the intensity ratio of peaks at 1360 cm
−
1
and 1565 cm
−
1
have been found to be sensitive parameters that reflect the conductivity type of ZnO:N. Explanations are presented which correlate the Raman features to the electric conductivity of the films. From this analysis, we found that at temperature lower than or at 400 °C, nitrogen incorporation will form the nitrogen or possible nitrogen carbon related defect complex. As the growth temperature increases to 500 °C, the features associated with nitrogen are difficult to distinguish and the features associated to carbon begin to emerge. This observation possibly indicates the decrease of the nitrogen content and the increase of the carbon content in the ZnO:N film. The increase of carbon content may affect the donor behavior of the film. This observation suggests that growth conditions should be controlled to avoid carbon into the film.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2006.12.186</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Chemical vapor deposition ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; DOPED MATERIALS ; Electrical properties of specific thin films ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; MATERIALS SCIENCE ; Methods of deposition of films and coatings; film growth and epitaxy ; NITROGEN ; p-type ; Physics ; Raman scattering ; RAMAN SPECTROSCOPY ; SOLAR ENERGY ; Solar Energy - Photovoltaics ; Theory and models of film growth ; Thin films ; Zinc Oxide ; ZINC OXIDES</subject><ispartof>Thin solid films, 2007-05, Vol.515 (13), p.5282-5286</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-632d2546567e7cbceae127878c8e4381989b0ec1ab1baf92972c456bc91461553</citedby><cites>FETCH-LOGICAL-c353t-632d2546567e7cbceae127878c8e4381989b0ec1ab1baf92972c456bc91461553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0040609007000053$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18673366$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/908006$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kerr, Lei L.</creatorcontrib><creatorcontrib>Li, Xiaonan</creatorcontrib><creatorcontrib>Canepa, Marina</creatorcontrib><creatorcontrib>Sommer, Andre J.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Raman analysis of nitrogen doped ZnO</title><title>Thin solid films</title><description>The mechanism of nitrogen doping is essential for making
p-type ZnO. This paper demonstrates that Raman characterization is a potentially powerful tool to study the mechanism of nitrogen doping. We have observed new Raman features near 280, 510, 570, 642, 773, 1360 and 1565 cm
−
1
shift in nitrogen doped ZnO (ZnO:N) thin films compared with undoped ZnO films. Peaks at 280, 510, 570, 642, and 773 cm
−
1
are attributed to the nitrogen related defect complex. The Raman peaks at 1360 cm
−
1
and 1565 cm
−
1
shift are assigned to D—(disordered) and G—(Graphitic) bands associated with the carbon-related defect complex, respectively. The intensity and the intensity ratio of peaks at 1360 cm
−
1
and 1565 cm
−
1
have been found to be sensitive parameters that reflect the conductivity type of ZnO:N. Explanations are presented which correlate the Raman features to the electric conductivity of the films. From this analysis, we found that at temperature lower than or at 400 °C, nitrogen incorporation will form the nitrogen or possible nitrogen carbon related defect complex. As the growth temperature increases to 500 °C, the features associated with nitrogen are difficult to distinguish and the features associated to carbon begin to emerge. This observation possibly indicates the decrease of the nitrogen content and the increase of the carbon content in the ZnO:N film. The increase of carbon content may affect the donor behavior of the film. This observation suggests that growth conditions should be controlled to avoid carbon into the film.</description><subject>Chemical vapor deposition</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DOPED MATERIALS</subject><subject>Electrical properties of specific thin films</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>MATERIALS SCIENCE</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>NITROGEN</subject><subject>p-type</subject><subject>Physics</subject><subject>Raman scattering</subject><subject>RAMAN SPECTROSCOPY</subject><subject>SOLAR ENERGY</subject><subject>Solar Energy - Photovoltaics</subject><subject>Theory and models of film growth</subject><subject>Thin films</subject><subject>Zinc Oxide</subject><subject>ZINC OXIDES</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8V9Ng6k7T5wJMsfsHCgujFS0jTVLPspiUpwv57Wyp48zSX55155yHkEqFAQH67LYbUFhSAF0gLlPyILFAKlVPB8JgsAErIOSg4JWcpbQEAKWULcv1q9iZkJpjdIfmUdW0W_BC7Txeyputdk32EzTk5ac0uuYvfuSTvjw9vq-d8vXl6Wd2vc8sqNuSc0YZWJa-4cMLW1hmHVEghrXQlk6ikqsFZNDXWplVUCWrLitdWYcmxqtiSXM17uzR4nawfnP2yXQjODlqBHL8bGZwZG7uUomt1H_3exING0JMKvdWjCj2p0Ej1qGLM3MyZ3iRrdm00wfr0F5RcMMYn7m7m3Pjkt3dx6uCCdY2PU4Wm8_9c-QEkT3E2</recordid><startdate>20070507</startdate><enddate>20070507</enddate><creator>Kerr, Lei L.</creator><creator>Li, Xiaonan</creator><creator>Canepa, Marina</creator><creator>Sommer, Andre J.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20070507</creationdate><title>Raman analysis of nitrogen doped ZnO</title><author>Kerr, Lei L. ; Li, Xiaonan ; Canepa, Marina ; Sommer, Andre J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-632d2546567e7cbceae127878c8e4381989b0ec1ab1baf92972c456bc91461553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Chemical vapor deposition</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DOPED MATERIALS</topic><topic>Electrical properties of specific thin films</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>MATERIALS SCIENCE</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>NITROGEN</topic><topic>p-type</topic><topic>Physics</topic><topic>Raman scattering</topic><topic>RAMAN SPECTROSCOPY</topic><topic>SOLAR ENERGY</topic><topic>Solar Energy - Photovoltaics</topic><topic>Theory and models of film growth</topic><topic>Thin films</topic><topic>Zinc Oxide</topic><topic>ZINC OXIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kerr, Lei L.</creatorcontrib><creatorcontrib>Li, Xiaonan</creatorcontrib><creatorcontrib>Canepa, Marina</creatorcontrib><creatorcontrib>Sommer, Andre J.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kerr, Lei L.</au><au>Li, Xiaonan</au><au>Canepa, Marina</au><au>Sommer, Andre J.</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raman analysis of nitrogen doped ZnO</atitle><jtitle>Thin solid films</jtitle><date>2007-05-07</date><risdate>2007</risdate><volume>515</volume><issue>13</issue><spage>5282</spage><epage>5286</epage><pages>5282-5286</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>The mechanism of nitrogen doping is essential for making
p-type ZnO. This paper demonstrates that Raman characterization is a potentially powerful tool to study the mechanism of nitrogen doping. We have observed new Raman features near 280, 510, 570, 642, 773, 1360 and 1565 cm
−
1
shift in nitrogen doped ZnO (ZnO:N) thin films compared with undoped ZnO films. Peaks at 280, 510, 570, 642, and 773 cm
−
1
are attributed to the nitrogen related defect complex. The Raman peaks at 1360 cm
−
1
and 1565 cm
−
1
shift are assigned to D—(disordered) and G—(Graphitic) bands associated with the carbon-related defect complex, respectively. The intensity and the intensity ratio of peaks at 1360 cm
−
1
and 1565 cm
−
1
have been found to be sensitive parameters that reflect the conductivity type of ZnO:N. Explanations are presented which correlate the Raman features to the electric conductivity of the films. From this analysis, we found that at temperature lower than or at 400 °C, nitrogen incorporation will form the nitrogen or possible nitrogen carbon related defect complex. As the growth temperature increases to 500 °C, the features associated with nitrogen are difficult to distinguish and the features associated to carbon begin to emerge. This observation possibly indicates the decrease of the nitrogen content and the increase of the carbon content in the ZnO:N film. The increase of carbon content may affect the donor behavior of the film. This observation suggests that growth conditions should be controlled to avoid carbon into the film.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2006.12.186</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6090 |
ispartof | Thin solid films, 2007-05, Vol.515 (13), p.5282-5286 |
issn | 0040-6090 1879-2731 |
language | eng |
recordid | cdi_osti_scitechconnect_908006 |
source | Elsevier ScienceDirect Journals |
subjects | Chemical vapor deposition Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology DOPED MATERIALS Electrical properties of specific thin films Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Exact sciences and technology MATERIALS SCIENCE Methods of deposition of films and coatings film growth and epitaxy NITROGEN p-type Physics Raman scattering RAMAN SPECTROSCOPY SOLAR ENERGY Solar Energy - Photovoltaics Theory and models of film growth Thin films Zinc Oxide ZINC OXIDES |
title | Raman analysis of nitrogen doped ZnO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raman%20analysis%20of%20nitrogen%20doped%20ZnO&rft.jtitle=Thin%20solid%20films&rft.au=Kerr,%20Lei%20L.&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2007-05-07&rft.volume=515&rft.issue=13&rft.spage=5282&rft.epage=5286&rft.pages=5282-5286&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2006.12.186&rft_dat=%3Celsevier_osti_%3ES0040609007000053%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0040609007000053&rfr_iscdi=true |