Structure of the Coiled-Coil Dimerization Motif of Sir4 and Its Interaction with Sir3
The yeast silent information regulators Sir2, Sir3, and Sir4 physically interact with one another to establish a transcriptionally silent state by forming repressive chromatin structures. The Sir4 protein contains binding sites for both Sir2 and Sir3, and these protein-protein interactions are requi...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2003-06, Vol.11 (6), p.637-649 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The yeast silent information regulators Sir2, Sir3, and Sir4 physically interact with one another to establish a transcriptionally silent state by forming repressive chromatin structures. The Sir4 protein contains binding sites for both Sir2 and Sir3, and these protein-protein interactions are required for gene silencing. Here, we report the X-ray structure of the coiled-coil dimerization motif within the C-terminus of Sir4 and show that it forms a stable 1:1 complex with a dimeric fragment of Sir3 (residues 464–978). We have identified a cluster of residues on the surface of the Sir4 coiled coil required for specific interactions with Sir3. The histone deacetylase Sir2 can also bind to this complex, forming a ternary complex with the truncated Sir3 and Sir4 proteins. The dual interactions of Sir4 with Sir3 and Sir2 suggest a physical basis for recruiting Sir3 to chromatin by virtue of its interactions with Sir4 and with deacetylated histones in chromatin. |
---|---|
ISSN: | 0969-2126 0168-9002 1878-4186 1872-9576 |
DOI: | 10.1016/S0969-2126(03)00093-5 |