Determination of NAPL−Water Interfacial Areas in Well-Characterized Porous Media
The nonaqueous-phase liquid (NAPL)−water interfacial area is an important parameter which influences the rate of NAPL dissolution in porous media. The aim of this study was to generate a set of baseline data for specific interfacial area for a two-phase-entrapped NAPL−water system in well-characteri...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2006-02, Vol.40 (3), p.815-822 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 822 |
---|---|
container_issue | 3 |
container_start_page | 815 |
container_title | Environmental science & technology |
container_volume | 40 |
creator | Dobson, Richard Schroth, Martin H Oostrom, Mart Zeyer, Josef |
description | The nonaqueous-phase liquid (NAPL)−water interfacial area is an important parameter which influences the rate of NAPL dissolution in porous media. The aim of this study was to generate a set of baseline data for specific interfacial area for a two-phase-entrapped NAPL−water system in well-characterized porous media and subsequently use these data to evaluate two current theoretical models. The first model tested distributes entrapped NAPL over the pore classes based on Land's algorithm and assumes the resulting blobs to be spherical. The other model is thermodynamically based, assuming that reversible work done on the system results in an increase in interfacial area, such that the area between drainage and imbibition retention curves can be related to the interfacial area. Interfacial tracer tests (IFTT) were used to measure specific entrapped NAPL (hexadecane)−water interfacial areas in columns packed with four grades (12/20, 20/30, 30/40, 40/50) of silica sand. By use of the anionic surfactant dihexylsulfosuccinate (Aerosol MA80), IFTT gave specific interfacial areas between 58 cm-1 for the finest sand and 16 cm-1 for the coarsest, compared to values of between 33 and 7 cm-1 for the first model and between 19 and 5 cm-1 for the thermodynamic model. Results from the literature suggest that nonspherical blobs shapes occur relatively frequently; hence it is reasonable to suggest that the assumption of spherical NAPL blobs may explain the underprediction by the first model. The thermodynamic model underestimates the interfacial area because it assumes that entrapment occurs only within the largest pores. A modified version of the latter model, allowing entrapment across all pore classes, yielded values between 58 and 13 cm-1. Of the models tested the modified thermodynamic model best predicts the interfacial area. |
doi_str_mv | 10.1021/es050037p |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_881932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>14767698</sourcerecordid><originalsourceid>FETCH-LOGICAL-a519t-f9c221a836877b9734297e7581b7123c898580de1e77935cce477173b99d8b2c3</originalsourceid><addsrcrecordid>eNqFkcFuEzEURS1ERUNgwQ-goRJIXQz4jeN59jKkFCqlENGidmd5PG9Ul8lMsCcS8AWs-4l8CY4SNRIs2NiS39F99_oy9gz4a-AFvKHIJecCVw_YCGTBc6kkPGQjzkHkWpTXh-xxjLec80Jw9YgdQim5FoUYsc8nNFBY-s4Ovu-yvsk-Thfz37_urmx6z866dDbWedtm00A2Zr7Lrqht89mNDdalqf9JdbboQ7-O2TnV3j5hB41tIz3d3WP25fTd5exDPv_0_mw2nedWgh7yRruiAKtEqRArjWJSaCSUCiqEQjillVS8JiBELaRzNEEEFJXWtaoKJ8bsxVa3j4M30fmB3I3ru47cYJSCTcAxe7VlVqH_tqY4mKWPLvm3HSXDBrTWIHHyf3CCJZZaJfDoL_C2X4cuBTXpc0GUAjZrj7eQC32MgRqzCn5pww8D3GwqM_eVJfb5TnBdLanek7uOEvByB9jobNsE2zkf9xyi4FptluZbzseBvt_PbfhqShQozeXiwpyXFyeL67docK9rXdyH-NfgH8LKtpM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230136312</pqid></control><display><type>article</type><title>Determination of NAPL−Water Interfacial Areas in Well-Characterized Porous Media</title><source>ACS Publications</source><source>MEDLINE</source><creator>Dobson, Richard ; Schroth, Martin H ; Oostrom, Mart ; Zeyer, Josef</creator><creatorcontrib>Dobson, Richard ; Schroth, Martin H ; Oostrom, Mart ; Zeyer, Josef ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>The nonaqueous-phase liquid (NAPL)−water interfacial area is an important parameter which influences the rate of NAPL dissolution in porous media. The aim of this study was to generate a set of baseline data for specific interfacial area for a two-phase-entrapped NAPL−water system in well-characterized porous media and subsequently use these data to evaluate two current theoretical models. The first model tested distributes entrapped NAPL over the pore classes based on Land's algorithm and assumes the resulting blobs to be spherical. The other model is thermodynamically based, assuming that reversible work done on the system results in an increase in interfacial area, such that the area between drainage and imbibition retention curves can be related to the interfacial area. Interfacial tracer tests (IFTT) were used to measure specific entrapped NAPL (hexadecane)−water interfacial areas in columns packed with four grades (12/20, 20/30, 30/40, 40/50) of silica sand. By use of the anionic surfactant dihexylsulfosuccinate (Aerosol MA80), IFTT gave specific interfacial areas between 58 cm-1 for the finest sand and 16 cm-1 for the coarsest, compared to values of between 33 and 7 cm-1 for the first model and between 19 and 5 cm-1 for the thermodynamic model. Results from the literature suggest that nonspherical blobs shapes occur relatively frequently; hence it is reasonable to suggest that the assumption of spherical NAPL blobs may explain the underprediction by the first model. The thermodynamic model underestimates the interfacial area because it assumes that entrapment occurs only within the largest pores. A modified version of the latter model, allowing entrapment across all pore classes, yielded values between 58 and 13 cm-1. Of the models tested the modified thermodynamic model best predicts the interfacial area.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es050037p</identifier><identifier>PMID: 16509323</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>ALGORITHMS ; Applied sciences ; Biological and physicochemical properties of pollutants. Interaction in the soil ; DISSOLUTION ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Environmental Molecular Sciences Laboratory ; Environmental science ; ENVIRONMENTAL SCIENCES ; Exact sciences and technology ; Forecasting ; GROUND WATER ; INTERFACES ; Models, Theoretical ; ORGANIC COMPOUNDS ; Pollution ; Pollution, environment geology ; Porosity ; POROUS MATERIALS ; Reference Values ; SAND ; SILICA ; Soil and sediments pollution ; Solubility ; SURFACTANTS ; THERMODYNAMICS ; Water ; Water - chemistry ; Water Movements ; Water Pollutants ; Water Supply</subject><ispartof>Environmental science & technology, 2006-02, Vol.40 (3), p.815-822</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2006 INIST-CNRS</rights><rights>Copyright American Chemical Society Feb 1, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a519t-f9c221a836877b9734297e7581b7123c898580de1e77935cce477173b99d8b2c3</citedby><cites>FETCH-LOGICAL-a519t-f9c221a836877b9734297e7581b7123c898580de1e77935cce477173b99d8b2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es050037p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es050037p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,782,786,887,2769,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17730982$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16509323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/881932$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dobson, Richard</creatorcontrib><creatorcontrib>Schroth, Martin H</creatorcontrib><creatorcontrib>Oostrom, Mart</creatorcontrib><creatorcontrib>Zeyer, Josef</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Determination of NAPL−Water Interfacial Areas in Well-Characterized Porous Media</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The nonaqueous-phase liquid (NAPL)−water interfacial area is an important parameter which influences the rate of NAPL dissolution in porous media. The aim of this study was to generate a set of baseline data for specific interfacial area for a two-phase-entrapped NAPL−water system in well-characterized porous media and subsequently use these data to evaluate two current theoretical models. The first model tested distributes entrapped NAPL over the pore classes based on Land's algorithm and assumes the resulting blobs to be spherical. The other model is thermodynamically based, assuming that reversible work done on the system results in an increase in interfacial area, such that the area between drainage and imbibition retention curves can be related to the interfacial area. Interfacial tracer tests (IFTT) were used to measure specific entrapped NAPL (hexadecane)−water interfacial areas in columns packed with four grades (12/20, 20/30, 30/40, 40/50) of silica sand. By use of the anionic surfactant dihexylsulfosuccinate (Aerosol MA80), IFTT gave specific interfacial areas between 58 cm-1 for the finest sand and 16 cm-1 for the coarsest, compared to values of between 33 and 7 cm-1 for the first model and between 19 and 5 cm-1 for the thermodynamic model. Results from the literature suggest that nonspherical blobs shapes occur relatively frequently; hence it is reasonable to suggest that the assumption of spherical NAPL blobs may explain the underprediction by the first model. The thermodynamic model underestimates the interfacial area because it assumes that entrapment occurs only within the largest pores. A modified version of the latter model, allowing entrapment across all pore classes, yielded values between 58 and 13 cm-1. Of the models tested the modified thermodynamic model best predicts the interfacial area.</description><subject>ALGORITHMS</subject><subject>Applied sciences</subject><subject>Biological and physicochemical properties of pollutants. Interaction in the soil</subject><subject>DISSOLUTION</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>Environmental science</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>GROUND WATER</subject><subject>INTERFACES</subject><subject>Models, Theoretical</subject><subject>ORGANIC COMPOUNDS</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Porosity</subject><subject>POROUS MATERIALS</subject><subject>Reference Values</subject><subject>SAND</subject><subject>SILICA</subject><subject>Soil and sediments pollution</subject><subject>Solubility</subject><subject>SURFACTANTS</subject><subject>THERMODYNAMICS</subject><subject>Water</subject><subject>Water - chemistry</subject><subject>Water Movements</subject><subject>Water Pollutants</subject><subject>Water Supply</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFuEzEURS1ERUNgwQ-goRJIXQz4jeN59jKkFCqlENGidmd5PG9Ul8lMsCcS8AWs-4l8CY4SNRIs2NiS39F99_oy9gz4a-AFvKHIJecCVw_YCGTBc6kkPGQjzkHkWpTXh-xxjLec80Jw9YgdQim5FoUYsc8nNFBY-s4Ovu-yvsk-Thfz37_urmx6z866dDbWedtm00A2Zr7Lrqht89mNDdalqf9JdbboQ7-O2TnV3j5hB41tIz3d3WP25fTd5exDPv_0_mw2nedWgh7yRruiAKtEqRArjWJSaCSUCiqEQjillVS8JiBELaRzNEEEFJXWtaoKJ8bsxVa3j4M30fmB3I3ru47cYJSCTcAxe7VlVqH_tqY4mKWPLvm3HSXDBrTWIHHyf3CCJZZaJfDoL_C2X4cuBTXpc0GUAjZrj7eQC32MgRqzCn5pww8D3GwqM_eVJfb5TnBdLanek7uOEvByB9jobNsE2zkf9xyi4FptluZbzseBvt_PbfhqShQozeXiwpyXFyeL67docK9rXdyH-NfgH8LKtpM</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Dobson, Richard</creator><creator>Schroth, Martin H</creator><creator>Oostrom, Mart</creator><creator>Zeyer, Josef</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope><scope>OTOTI</scope></search><sort><creationdate>20060201</creationdate><title>Determination of NAPL−Water Interfacial Areas in Well-Characterized Porous Media</title><author>Dobson, Richard ; Schroth, Martin H ; Oostrom, Mart ; Zeyer, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a519t-f9c221a836877b9734297e7581b7123c898580de1e77935cce477173b99d8b2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ALGORITHMS</topic><topic>Applied sciences</topic><topic>Biological and physicochemical properties of pollutants. Interaction in the soil</topic><topic>DISSOLUTION</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>Environmental science</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>GROUND WATER</topic><topic>INTERFACES</topic><topic>Models, Theoretical</topic><topic>ORGANIC COMPOUNDS</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Porosity</topic><topic>POROUS MATERIALS</topic><topic>Reference Values</topic><topic>SAND</topic><topic>SILICA</topic><topic>Soil and sediments pollution</topic><topic>Solubility</topic><topic>SURFACTANTS</topic><topic>THERMODYNAMICS</topic><topic>Water</topic><topic>Water - chemistry</topic><topic>Water Movements</topic><topic>Water Pollutants</topic><topic>Water Supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dobson, Richard</creatorcontrib><creatorcontrib>Schroth, Martin H</creatorcontrib><creatorcontrib>Oostrom, Mart</creatorcontrib><creatorcontrib>Zeyer, Josef</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dobson, Richard</au><au>Schroth, Martin H</au><au>Oostrom, Mart</au><au>Zeyer, Josef</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of NAPL−Water Interfacial Areas in Well-Characterized Porous Media</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>40</volume><issue>3</issue><spage>815</spage><epage>822</epage><pages>815-822</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>The nonaqueous-phase liquid (NAPL)−water interfacial area is an important parameter which influences the rate of NAPL dissolution in porous media. The aim of this study was to generate a set of baseline data for specific interfacial area for a two-phase-entrapped NAPL−water system in well-characterized porous media and subsequently use these data to evaluate two current theoretical models. The first model tested distributes entrapped NAPL over the pore classes based on Land's algorithm and assumes the resulting blobs to be spherical. The other model is thermodynamically based, assuming that reversible work done on the system results in an increase in interfacial area, such that the area between drainage and imbibition retention curves can be related to the interfacial area. Interfacial tracer tests (IFTT) were used to measure specific entrapped NAPL (hexadecane)−water interfacial areas in columns packed with four grades (12/20, 20/30, 30/40, 40/50) of silica sand. By use of the anionic surfactant dihexylsulfosuccinate (Aerosol MA80), IFTT gave specific interfacial areas between 58 cm-1 for the finest sand and 16 cm-1 for the coarsest, compared to values of between 33 and 7 cm-1 for the first model and between 19 and 5 cm-1 for the thermodynamic model. Results from the literature suggest that nonspherical blobs shapes occur relatively frequently; hence it is reasonable to suggest that the assumption of spherical NAPL blobs may explain the underprediction by the first model. The thermodynamic model underestimates the interfacial area because it assumes that entrapment occurs only within the largest pores. A modified version of the latter model, allowing entrapment across all pore classes, yielded values between 58 and 13 cm-1. Of the models tested the modified thermodynamic model best predicts the interfacial area.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16509323</pmid><doi>10.1021/es050037p</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2006-02, Vol.40 (3), p.815-822 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_osti_scitechconnect_881932 |
source | ACS Publications; MEDLINE |
subjects | ALGORITHMS Applied sciences Biological and physicochemical properties of pollutants. Interaction in the soil DISSOLUTION Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Environmental Molecular Sciences Laboratory Environmental science ENVIRONMENTAL SCIENCES Exact sciences and technology Forecasting GROUND WATER INTERFACES Models, Theoretical ORGANIC COMPOUNDS Pollution Pollution, environment geology Porosity POROUS MATERIALS Reference Values SAND SILICA Soil and sediments pollution Solubility SURFACTANTS THERMODYNAMICS Water Water - chemistry Water Movements Water Pollutants Water Supply |
title | Determination of NAPL−Water Interfacial Areas in Well-Characterized Porous Media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T03%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20NAPL%E2%88%92Water%20Interfacial%20Areas%20in%20Well-Characterized%20Porous%20Media&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Dobson,%20Richard&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2006-02-01&rft.volume=40&rft.issue=3&rft.spage=815&rft.epage=822&rft.pages=815-822&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es050037p&rft_dat=%3Cproquest_osti_%3E14767698%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230136312&rft_id=info:pmid/16509323&rfr_iscdi=true |