Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor
One view of the high-transition-temperature (high- T c ) copper oxide superconductors is that they are conventional superconductors where the pairing occurs between weakly interacting quasiparticles (corresponding to the electrons in ordinary metals), although the theory has to be pushed to its limi...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2002-01, Vol.415 (6869), p.299-302 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 302 |
---|---|
container_issue | 6869 |
container_start_page | 299 |
container_title | Nature (London) |
container_volume | 415 |
creator | Lake, B. Rønnow, H. M. Christensen, N. B. Aeppli, G. Lefmann, K. McMorrow, D. F. Vorderwisch, P. Smeibidl, P. Mangkorntong, N. Sasagawa, T. Nohara, M. Takagi, H. Mason, T. E. |
description | One view of the high-transition-temperature (high-
T
c
) copper oxide superconductors is that they are conventional superconductors where the pairing occurs between weakly interacting quasiparticles (corresponding to the electrons in ordinary metals), although the theory has to be pushed to its limit
1
. An alternative view is that the electrons organize into collective textures (for example, charge and spin stripes) which cannot be ‘mapped’ onto the electrons in ordinary metals. Understanding the properties of the material would then need quantum field theories of objects such as textures and strings, rather than point-like electrons
2
,
3
,
4
,
5
,
6
. In an external magnetic field, magnetic flux penetrates type II superconductors via vortices, each carrying one flux quantum
7
. The vortices form lattices of resistive material embedded in the non-resistive superconductor, and can reveal the nature of the ground state—for example, a conventional metal or an ordered, striped phase—which would have appeared had superconductivity not intervened, and which provides the best starting point for a pairing theory. Here we report that for one high-
T
c
superconductor, the applied field that imposes the vortex lattice also induces ‘striped’ antiferromagnetic order. Ordinary quasiparticle models can account for neither the strength of the order nor the nearly field-independent antiferromagnetic transition temperature observed in our measurements. |
doi_str_mv | 10.1038/415299a |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_859630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187492099</galeid><sourcerecordid>A187492099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c664t-ed12dd7f28ea27c630b4c5bbefcee981d3d61291192c37b6a60a73c4558d2e3a3</originalsourceid><addsrcrecordid>eNqF0luL1DAYBuAiijuu4j-QuuAJ6ZqkadJcDoOHhUVBV7wMafK1k6VNu0kK7r83awfHWVakFz3kydv25cuypxidYlTW7yiuiBDqXrbClLOCsprfz1YIkbpAdcmOskchXCKEKszpw-wIYy54Wl1lau2ibcH7cVCdg2h1PnoDPrfOzBpM3lznyuVqmnqb7v6g1kJvEspVvrXdtogwTOBVnD3kYU6XerwJiKN_nD1oVR_gye58nH3_8P5i86k4__LxbLM-LzRjNBZgMDGGt6QGRbhmJWqorpoGWg0gamxKwzARGAuiS94wxZDipaZVVRsCpSqPs-dL7hiilUHbCHqbvsKBjrKuREpM5uViJj9ezRCiHGzQ0PfKwTgHyTFFJBX6X0g4Q4TyKsGTW_BynL1LPyoJohWu0W9ULKhTPUjr2jF6pTtwqbF-dNDa9HiNa04FQULsQw-8nuyV_Bud3oHSYWCw-s7UNwcbkonwM3ZqDkGefft6aN_-264vfmw-H-pXi9Z-DMFDKydvB-WvJUbyZj7lbj6TfLara24GMHu3G8gEXuyAClr1rVdO27B3JRUsNZrc68WFtOQ68Pveb7_zF6Gt9WY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204518075</pqid></control><display><type>article</type><title>Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Lake, B. ; Rønnow, H. M. ; Christensen, N. B. ; Aeppli, G. ; Lefmann, K. ; McMorrow, D. F. ; Vorderwisch, P. ; Smeibidl, P. ; Mangkorntong, N. ; Sasagawa, T. ; Nohara, M. ; Takagi, H. ; Mason, T. E.</creator><creatorcontrib>Lake, B. ; Rønnow, H. M. ; Christensen, N. B. ; Aeppli, G. ; Lefmann, K. ; McMorrow, D. F. ; Vorderwisch, P. ; Smeibidl, P. ; Mangkorntong, N. ; Sasagawa, T. ; Nohara, M. ; Takagi, H. ; Mason, T. E. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>One view of the high-transition-temperature (high-
T
c
) copper oxide superconductors is that they are conventional superconductors where the pairing occurs between weakly interacting quasiparticles (corresponding to the electrons in ordinary metals), although the theory has to be pushed to its limit
1
. An alternative view is that the electrons organize into collective textures (for example, charge and spin stripes) which cannot be ‘mapped’ onto the electrons in ordinary metals. Understanding the properties of the material would then need quantum field theories of objects such as textures and strings, rather than point-like electrons
2
,
3
,
4
,
5
,
6
. In an external magnetic field, magnetic flux penetrates type II superconductors via vortices, each carrying one flux quantum
7
. The vortices form lattices of resistive material embedded in the non-resistive superconductor, and can reveal the nature of the ground state—for example, a conventional metal or an ordered, striped phase—which would have appeared had superconductivity not intervened, and which provides the best starting point for a pairing theory. Here we report that for one high-
T
c
superconductor, the applied field that imposes the vortex lattice also induces ‘striped’ antiferromagnetic order. Ordinary quasiparticle models can account for neither the strength of the order nor the nearly field-independent antiferromagnetic transition temperature observed in our measurements.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/415299a</identifier><identifier>PMID: 11797002</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>ANTIFERROMAGNETISM ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Copper ; Electrons ; Exact sciences and technology ; High temperature ; Humanities and Social Sciences ; letter ; MAGNETIC FIELDS ; Magnetic properties ; Magnetism ; MATERIALS SCIENCE ; Metals ; multidisciplinary ; Physics ; Properties of type I and type II superconductors ; Science ; Science (multidisciplinary) ; Superconductivity ; SUPERCONDUCTORS ; Temperature ; Transition temperatures ; Vortex lattices ,flux pinning, flux creep</subject><ispartof>Nature (London), 2002-01, Vol.415 (6869), p.299-302</ispartof><rights>Macmillan Magazines Ltd. 2002</rights><rights>2002 INIST-CNRS</rights><rights>COPYRIGHT 2002 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Jan 17, 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c664t-ed12dd7f28ea27c630b4c5bbefcee981d3d61291192c37b6a60a73c4558d2e3a3</citedby><cites>FETCH-LOGICAL-c664t-ed12dd7f28ea27c630b4c5bbefcee981d3d61291192c37b6a60a73c4558d2e3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/415299a$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/415299a$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13496753$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11797002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/859630$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lake, B.</creatorcontrib><creatorcontrib>Rønnow, H. M.</creatorcontrib><creatorcontrib>Christensen, N. B.</creatorcontrib><creatorcontrib>Aeppli, G.</creatorcontrib><creatorcontrib>Lefmann, K.</creatorcontrib><creatorcontrib>McMorrow, D. F.</creatorcontrib><creatorcontrib>Vorderwisch, P.</creatorcontrib><creatorcontrib>Smeibidl, P.</creatorcontrib><creatorcontrib>Mangkorntong, N.</creatorcontrib><creatorcontrib>Sasagawa, T.</creatorcontrib><creatorcontrib>Nohara, M.</creatorcontrib><creatorcontrib>Takagi, H.</creatorcontrib><creatorcontrib>Mason, T. E.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>One view of the high-transition-temperature (high-
T
c
) copper oxide superconductors is that they are conventional superconductors where the pairing occurs between weakly interacting quasiparticles (corresponding to the electrons in ordinary metals), although the theory has to be pushed to its limit
1
. An alternative view is that the electrons organize into collective textures (for example, charge and spin stripes) which cannot be ‘mapped’ onto the electrons in ordinary metals. Understanding the properties of the material would then need quantum field theories of objects such as textures and strings, rather than point-like electrons
2
,
3
,
4
,
5
,
6
. In an external magnetic field, magnetic flux penetrates type II superconductors via vortices, each carrying one flux quantum
7
. The vortices form lattices of resistive material embedded in the non-resistive superconductor, and can reveal the nature of the ground state—for example, a conventional metal or an ordered, striped phase—which would have appeared had superconductivity not intervened, and which provides the best starting point for a pairing theory. Here we report that for one high-
T
c
superconductor, the applied field that imposes the vortex lattice also induces ‘striped’ antiferromagnetic order. Ordinary quasiparticle models can account for neither the strength of the order nor the nearly field-independent antiferromagnetic transition temperature observed in our measurements.</description><subject>ANTIFERROMAGNETISM</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Copper</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>High temperature</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>MAGNETIC FIELDS</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>MATERIALS SCIENCE</subject><subject>Metals</subject><subject>multidisciplinary</subject><subject>Physics</subject><subject>Properties of type I and type II superconductors</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Superconductivity</subject><subject>SUPERCONDUCTORS</subject><subject>Temperature</subject><subject>Transition temperatures</subject><subject>Vortex lattices ,flux pinning, flux creep</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0luL1DAYBuAiijuu4j-QuuAJ6ZqkadJcDoOHhUVBV7wMafK1k6VNu0kK7r83awfHWVakFz3kydv25cuypxidYlTW7yiuiBDqXrbClLOCsprfz1YIkbpAdcmOskchXCKEKszpw-wIYy54Wl1lau2ibcH7cVCdg2h1PnoDPrfOzBpM3lznyuVqmnqb7v6g1kJvEspVvrXdtogwTOBVnD3kYU6XerwJiKN_nD1oVR_gye58nH3_8P5i86k4__LxbLM-LzRjNBZgMDGGt6QGRbhmJWqorpoGWg0gamxKwzARGAuiS94wxZDipaZVVRsCpSqPs-dL7hiilUHbCHqbvsKBjrKuREpM5uViJj9ezRCiHGzQ0PfKwTgHyTFFJBX6X0g4Q4TyKsGTW_BynL1LPyoJohWu0W9ULKhTPUjr2jF6pTtwqbF-dNDa9HiNa04FQULsQw-8nuyV_Bud3oHSYWCw-s7UNwcbkonwM3ZqDkGefft6aN_-264vfmw-H-pXi9Z-DMFDKydvB-WvJUbyZj7lbj6TfLara24GMHu3G8gEXuyAClr1rVdO27B3JRUsNZrc68WFtOQ68Pveb7_zF6Gt9WY</recordid><startdate>20020117</startdate><enddate>20020117</enddate><creator>Lake, B.</creator><creator>Rønnow, H. M.</creator><creator>Christensen, N. B.</creator><creator>Aeppli, G.</creator><creator>Lefmann, K.</creator><creator>McMorrow, D. F.</creator><creator>Vorderwisch, P.</creator><creator>Smeibidl, P.</creator><creator>Mangkorntong, N.</creator><creator>Sasagawa, T.</creator><creator>Nohara, M.</creator><creator>Takagi, H.</creator><creator>Mason, T. E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20020117</creationdate><title>Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor</title><author>Lake, B. ; Rønnow, H. M. ; Christensen, N. B. ; Aeppli, G. ; Lefmann, K. ; McMorrow, D. F. ; Vorderwisch, P. ; Smeibidl, P. ; Mangkorntong, N. ; Sasagawa, T. ; Nohara, M. ; Takagi, H. ; Mason, T. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c664t-ed12dd7f28ea27c630b4c5bbefcee981d3d61291192c37b6a60a73c4558d2e3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>ANTIFERROMAGNETISM</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Copper</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>High temperature</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>MAGNETIC FIELDS</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>MATERIALS SCIENCE</topic><topic>Metals</topic><topic>multidisciplinary</topic><topic>Physics</topic><topic>Properties of type I and type II superconductors</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Superconductivity</topic><topic>SUPERCONDUCTORS</topic><topic>Temperature</topic><topic>Transition temperatures</topic><topic>Vortex lattices ,flux pinning, flux creep</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lake, B.</creatorcontrib><creatorcontrib>Rønnow, H. M.</creatorcontrib><creatorcontrib>Christensen, N. B.</creatorcontrib><creatorcontrib>Aeppli, G.</creatorcontrib><creatorcontrib>Lefmann, K.</creatorcontrib><creatorcontrib>McMorrow, D. F.</creatorcontrib><creatorcontrib>Vorderwisch, P.</creatorcontrib><creatorcontrib>Smeibidl, P.</creatorcontrib><creatorcontrib>Mangkorntong, N.</creatorcontrib><creatorcontrib>Sasagawa, T.</creatorcontrib><creatorcontrib>Nohara, M.</creatorcontrib><creatorcontrib>Takagi, H.</creatorcontrib><creatorcontrib>Mason, T. E.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lake, B.</au><au>Rønnow, H. M.</au><au>Christensen, N. B.</au><au>Aeppli, G.</au><au>Lefmann, K.</au><au>McMorrow, D. F.</au><au>Vorderwisch, P.</au><au>Smeibidl, P.</au><au>Mangkorntong, N.</au><au>Sasagawa, T.</au><au>Nohara, M.</au><au>Takagi, H.</au><au>Mason, T. E.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2002-01-17</date><risdate>2002</risdate><volume>415</volume><issue>6869</issue><spage>299</spage><epage>302</epage><pages>299-302</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>One view of the high-transition-temperature (high-
T
c
) copper oxide superconductors is that they are conventional superconductors where the pairing occurs between weakly interacting quasiparticles (corresponding to the electrons in ordinary metals), although the theory has to be pushed to its limit
1
. An alternative view is that the electrons organize into collective textures (for example, charge and spin stripes) which cannot be ‘mapped’ onto the electrons in ordinary metals. Understanding the properties of the material would then need quantum field theories of objects such as textures and strings, rather than point-like electrons
2
,
3
,
4
,
5
,
6
. In an external magnetic field, magnetic flux penetrates type II superconductors via vortices, each carrying one flux quantum
7
. The vortices form lattices of resistive material embedded in the non-resistive superconductor, and can reveal the nature of the ground state—for example, a conventional metal or an ordered, striped phase—which would have appeared had superconductivity not intervened, and which provides the best starting point for a pairing theory. Here we report that for one high-
T
c
superconductor, the applied field that imposes the vortex lattice also induces ‘striped’ antiferromagnetic order. Ordinary quasiparticle models can account for neither the strength of the order nor the nearly field-independent antiferromagnetic transition temperature observed in our measurements.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>11797002</pmid><doi>10.1038/415299a</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2002-01, Vol.415 (6869), p.299-302 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_osti_scitechconnect_859630 |
source | Springer Nature - Complete Springer Journals; Nature |
subjects | ANTIFERROMAGNETISM Condensed matter: electronic structure, electrical, magnetic, and optical properties Copper Electrons Exact sciences and technology High temperature Humanities and Social Sciences letter MAGNETIC FIELDS Magnetic properties Magnetism MATERIALS SCIENCE Metals multidisciplinary Physics Properties of type I and type II superconductors Science Science (multidisciplinary) Superconductivity SUPERCONDUCTORS Temperature Transition temperatures Vortex lattices ,flux pinning, flux creep |
title | Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antiferromagnetic%20order%20induced%20by%20an%20applied%20magnetic%20field%20in%20a%20high-temperature%20superconductor&rft.jtitle=Nature%20(London)&rft.au=Lake,%20B.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2002-01-17&rft.volume=415&rft.issue=6869&rft.spage=299&rft.epage=302&rft.pages=299-302&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/415299a&rft_dat=%3Cgale_osti_%3EA187492099%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204518075&rft_id=info:pmid/11797002&rft_galeid=A187492099&rfr_iscdi=true |