A micromechanics model of the elastic properties of human dentine

A generalized, self-consistent model of cylindrical inclusions in a homogeneous and isotropic matrix phase was used to study the effects of tubule orientation on the elastic properties of dentine. Closed-form expressions for the five independent elastic constants of dentine were derived in terms of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of oral biology 1999-10, Vol.44 (10), p.813-822
Hauptverfasser: Kinney, J.H, Balooch, M, Marshall, G.W, Marshall, S.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 822
container_issue 10
container_start_page 813
container_title Archives of oral biology
container_volume 44
creator Kinney, J.H
Balooch, M
Marshall, G.W
Marshall, S.J
description A generalized, self-consistent model of cylindrical inclusions in a homogeneous and isotropic matrix phase was used to study the effects of tubule orientation on the elastic properties of dentine. Closed-form expressions for the five independent elastic constants of dentine were derived in terms of tubule concentration, and the Young’s moduli and Poisson ratios of peri- and intertubular dentine. An atomic-force microscope indentation technique determined the Young’s moduli of the peri- and intertubular dentine as approx. 30 and 15 GPa, respectively. Over the natural variation in tubule density found in dentine, there was only a slight variation in the axial and transverse shear moduli with position in the tooth, and there was no measurable effect of tubule orientation. It was concluded that tubule orientation has no appreciable effect on the elastic behaviour of normal dentine, and that the elastic properties of healthy dentine can be modelled as an isotropic continuum with a Young’s modulus of approx. 16 GPa and a shear modulus of 6.2 GPa.
doi_str_mv 10.1016/S0003-9969(99)00080-1
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_8421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003996999000801</els_id><sourcerecordid>70858443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-9e08a2985f10ec19b768bcb73f05e2b875ec8c565ea48cf9ce2f90369dcf4a823</originalsourceid><addsrcrecordid>eNqFkM1KxDAURoMozjj6CGpXootq0jZtspJh8A8GXKjrkN7eMpG2GZtU8O1NpyLu3CRccpLvyyHklNFrRll-80IpTWMpc3kp5VUYBI3ZHpkzUciYcZrvk_kvMiNHzr2Hkec5OyQzRnlKJcvmZLmMWgO9bRE2ujPgotZW2ES2jvwGI2y08waibW-32HuDbjzZDK3uogo7bzo8Jge1bhye_OwL8nZ_97p6jNfPD0-r5TqGTAofS6RCJ1LwmlEEJssiFyWURVpTjkkpCo4ggOccdSagloBJLWmaywrqTIskXZDz6V0bGikHxofKYLsOwSuRJSwQFxMR2n4M6LxqjQNsGt2hHZwqqOAiy9IA8gkMH3eux1pte9Pq_ksxqka7amdXjerConZ21Rhw9hMwlC1Wf25NOgNwOwEYRHwa7Mee2AFWph9rVtb8E_EN8RKJSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70858443</pqid></control><display><type>article</type><title>A micromechanics model of the elastic properties of human dentine</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Kinney, J.H ; Balooch, M ; Marshall, G.W ; Marshall, S.J</creator><creatorcontrib>Kinney, J.H ; Balooch, M ; Marshall, G.W ; Marshall, S.J ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>A generalized, self-consistent model of cylindrical inclusions in a homogeneous and isotropic matrix phase was used to study the effects of tubule orientation on the elastic properties of dentine. Closed-form expressions for the five independent elastic constants of dentine were derived in terms of tubule concentration, and the Young’s moduli and Poisson ratios of peri- and intertubular dentine. An atomic-force microscope indentation technique determined the Young’s moduli of the peri- and intertubular dentine as approx. 30 and 15 GPa, respectively. Over the natural variation in tubule density found in dentine, there was only a slight variation in the axial and transverse shear moduli with position in the tooth, and there was no measurable effect of tubule orientation. It was concluded that tubule orientation has no appreciable effect on the elastic behaviour of normal dentine, and that the elastic properties of healthy dentine can be modelled as an isotropic continuum with a Young’s modulus of approx. 16 GPa and a shear modulus of 6.2 GPa.</description><identifier>ISSN: 0003-9969</identifier><identifier>EISSN: 1879-1506</identifier><identifier>DOI: 10.1016/S0003-9969(99)00080-1</identifier><identifier>PMID: 10530914</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Atomic-force microscopy ; Dentin - physiology ; Dentine ; Dentistry ; Elasticity ; Humans ; Indentation ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Mathematics ; Mechanical properties ; Micromechanics ; Microscopy, Atomic Force - instrumentation ; Microscopy, Atomic Force - statistics &amp; numerical data ; Models, Biological ; Molar, Third ; Shear modulus ; Young’s modulus</subject><ispartof>Archives of oral biology, 1999-10, Vol.44 (10), p.813-822</ispartof><rights>1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-9e08a2985f10ec19b768bcb73f05e2b875ec8c565ea48cf9ce2f90369dcf4a823</citedby><cites>FETCH-LOGICAL-c498t-9e08a2985f10ec19b768bcb73f05e2b875ec8c565ea48cf9ce2f90369dcf4a823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0003-9969(99)00080-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10530914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/8421$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kinney, J.H</creatorcontrib><creatorcontrib>Balooch, M</creatorcontrib><creatorcontrib>Marshall, G.W</creatorcontrib><creatorcontrib>Marshall, S.J</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>A micromechanics model of the elastic properties of human dentine</title><title>Archives of oral biology</title><addtitle>Arch Oral Biol</addtitle><description>A generalized, self-consistent model of cylindrical inclusions in a homogeneous and isotropic matrix phase was used to study the effects of tubule orientation on the elastic properties of dentine. Closed-form expressions for the five independent elastic constants of dentine were derived in terms of tubule concentration, and the Young’s moduli and Poisson ratios of peri- and intertubular dentine. An atomic-force microscope indentation technique determined the Young’s moduli of the peri- and intertubular dentine as approx. 30 and 15 GPa, respectively. Over the natural variation in tubule density found in dentine, there was only a slight variation in the axial and transverse shear moduli with position in the tooth, and there was no measurable effect of tubule orientation. It was concluded that tubule orientation has no appreciable effect on the elastic behaviour of normal dentine, and that the elastic properties of healthy dentine can be modelled as an isotropic continuum with a Young’s modulus of approx. 16 GPa and a shear modulus of 6.2 GPa.</description><subject>Atomic-force microscopy</subject><subject>Dentin - physiology</subject><subject>Dentine</subject><subject>Dentistry</subject><subject>Elasticity</subject><subject>Humans</subject><subject>Indentation</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Mathematics</subject><subject>Mechanical properties</subject><subject>Micromechanics</subject><subject>Microscopy, Atomic Force - instrumentation</subject><subject>Microscopy, Atomic Force - statistics &amp; numerical data</subject><subject>Models, Biological</subject><subject>Molar, Third</subject><subject>Shear modulus</subject><subject>Young’s modulus</subject><issn>0003-9969</issn><issn>1879-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1KxDAURoMozjj6CGpXootq0jZtspJh8A8GXKjrkN7eMpG2GZtU8O1NpyLu3CRccpLvyyHklNFrRll-80IpTWMpc3kp5VUYBI3ZHpkzUciYcZrvk_kvMiNHzr2Hkec5OyQzRnlKJcvmZLmMWgO9bRE2ujPgotZW2ES2jvwGI2y08waibW-32HuDbjzZDK3uogo7bzo8Jge1bhye_OwL8nZ_97p6jNfPD0-r5TqGTAofS6RCJ1LwmlEEJssiFyWURVpTjkkpCo4ggOccdSagloBJLWmaywrqTIskXZDz6V0bGikHxofKYLsOwSuRJSwQFxMR2n4M6LxqjQNsGt2hHZwqqOAiy9IA8gkMH3eux1pte9Pq_ksxqka7amdXjerConZ21Rhw9hMwlC1Wf25NOgNwOwEYRHwa7Mee2AFWph9rVtb8E_EN8RKJSQ</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Kinney, J.H</creator><creator>Balooch, M</creator><creator>Marshall, G.W</creator><creator>Marshall, S.J</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>19991001</creationdate><title>A micromechanics model of the elastic properties of human dentine</title><author>Kinney, J.H ; Balooch, M ; Marshall, G.W ; Marshall, S.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-9e08a2985f10ec19b768bcb73f05e2b875ec8c565ea48cf9ce2f90369dcf4a823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Atomic-force microscopy</topic><topic>Dentin - physiology</topic><topic>Dentine</topic><topic>Dentistry</topic><topic>Elasticity</topic><topic>Humans</topic><topic>Indentation</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Mathematics</topic><topic>Mechanical properties</topic><topic>Micromechanics</topic><topic>Microscopy, Atomic Force - instrumentation</topic><topic>Microscopy, Atomic Force - statistics &amp; numerical data</topic><topic>Models, Biological</topic><topic>Molar, Third</topic><topic>Shear modulus</topic><topic>Young’s modulus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinney, J.H</creatorcontrib><creatorcontrib>Balooch, M</creatorcontrib><creatorcontrib>Marshall, G.W</creatorcontrib><creatorcontrib>Marshall, S.J</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Archives of oral biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinney, J.H</au><au>Balooch, M</au><au>Marshall, G.W</au><au>Marshall, S.J</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A micromechanics model of the elastic properties of human dentine</atitle><jtitle>Archives of oral biology</jtitle><addtitle>Arch Oral Biol</addtitle><date>1999-10-01</date><risdate>1999</risdate><volume>44</volume><issue>10</issue><spage>813</spage><epage>822</epage><pages>813-822</pages><issn>0003-9969</issn><eissn>1879-1506</eissn><abstract>A generalized, self-consistent model of cylindrical inclusions in a homogeneous and isotropic matrix phase was used to study the effects of tubule orientation on the elastic properties of dentine. Closed-form expressions for the five independent elastic constants of dentine were derived in terms of tubule concentration, and the Young’s moduli and Poisson ratios of peri- and intertubular dentine. An atomic-force microscope indentation technique determined the Young’s moduli of the peri- and intertubular dentine as approx. 30 and 15 GPa, respectively. Over the natural variation in tubule density found in dentine, there was only a slight variation in the axial and transverse shear moduli with position in the tooth, and there was no measurable effect of tubule orientation. It was concluded that tubule orientation has no appreciable effect on the elastic behaviour of normal dentine, and that the elastic properties of healthy dentine can be modelled as an isotropic continuum with a Young’s modulus of approx. 16 GPa and a shear modulus of 6.2 GPa.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>10530914</pmid><doi>10.1016/S0003-9969(99)00080-1</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-9969
ispartof Archives of oral biology, 1999-10, Vol.44 (10), p.813-822
issn 0003-9969
1879-1506
language eng
recordid cdi_osti_scitechconnect_8421
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Atomic-force microscopy
Dentin - physiology
Dentine
Dentistry
Elasticity
Humans
Indentation
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Mathematics
Mechanical properties
Micromechanics
Microscopy, Atomic Force - instrumentation
Microscopy, Atomic Force - statistics & numerical data
Models, Biological
Molar, Third
Shear modulus
Young’s modulus
title A micromechanics model of the elastic properties of human dentine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20micromechanics%20model%20of%20the%20elastic%20properties%20of%20human%20dentine&rft.jtitle=Archives%20of%20oral%20biology&rft.au=Kinney,%20J.H&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=1999-10-01&rft.volume=44&rft.issue=10&rft.spage=813&rft.epage=822&rft.pages=813-822&rft.issn=0003-9969&rft.eissn=1879-1506&rft_id=info:doi/10.1016/S0003-9969(99)00080-1&rft_dat=%3Cproquest_osti_%3E70858443%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70858443&rft_id=info:pmid/10530914&rft_els_id=S0003996999000801&rfr_iscdi=true