A micromechanics model of the elastic properties of human dentine
A generalized, self-consistent model of cylindrical inclusions in a homogeneous and isotropic matrix phase was used to study the effects of tubule orientation on the elastic properties of dentine. Closed-form expressions for the five independent elastic constants of dentine were derived in terms of...
Gespeichert in:
Veröffentlicht in: | Archives of oral biology 1999-10, Vol.44 (10), p.813-822 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 822 |
---|---|
container_issue | 10 |
container_start_page | 813 |
container_title | Archives of oral biology |
container_volume | 44 |
creator | Kinney, J.H Balooch, M Marshall, G.W Marshall, S.J |
description | A generalized, self-consistent model of cylindrical inclusions in a homogeneous and isotropic matrix phase was used to study the effects of tubule orientation on the elastic properties of dentine. Closed-form expressions for the five independent elastic constants of dentine were derived in terms of tubule concentration, and the Young’s moduli and Poisson ratios of peri- and intertubular dentine. An atomic-force microscope indentation technique determined the Young’s moduli of the peri- and intertubular dentine as approx. 30 and 15 GPa, respectively. Over the natural variation in tubule density found in dentine, there was only a slight variation in the axial and transverse shear moduli with position in the tooth, and there was no measurable effect of tubule orientation. It was concluded that tubule orientation has no appreciable effect on the elastic behaviour of normal dentine, and that the elastic properties of healthy dentine can be modelled as an isotropic continuum with a Young’s modulus of approx. 16 GPa and a shear modulus of 6.2 GPa. |
doi_str_mv | 10.1016/S0003-9969(99)00080-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_8421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003996999000801</els_id><sourcerecordid>70858443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-9e08a2985f10ec19b768bcb73f05e2b875ec8c565ea48cf9ce2f90369dcf4a823</originalsourceid><addsrcrecordid>eNqFkM1KxDAURoMozjj6CGpXootq0jZtspJh8A8GXKjrkN7eMpG2GZtU8O1NpyLu3CRccpLvyyHklNFrRll-80IpTWMpc3kp5VUYBI3ZHpkzUciYcZrvk_kvMiNHzr2Hkec5OyQzRnlKJcvmZLmMWgO9bRE2ujPgotZW2ES2jvwGI2y08waibW-32HuDbjzZDK3uogo7bzo8Jge1bhye_OwL8nZ_97p6jNfPD0-r5TqGTAofS6RCJ1LwmlEEJssiFyWURVpTjkkpCo4ggOccdSagloBJLWmaywrqTIskXZDz6V0bGikHxofKYLsOwSuRJSwQFxMR2n4M6LxqjQNsGt2hHZwqqOAiy9IA8gkMH3eux1pte9Pq_ksxqka7amdXjerConZ21Rhw9hMwlC1Wf25NOgNwOwEYRHwa7Mee2AFWph9rVtb8E_EN8RKJSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70858443</pqid></control><display><type>article</type><title>A micromechanics model of the elastic properties of human dentine</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Kinney, J.H ; Balooch, M ; Marshall, G.W ; Marshall, S.J</creator><creatorcontrib>Kinney, J.H ; Balooch, M ; Marshall, G.W ; Marshall, S.J ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>A generalized, self-consistent model of cylindrical inclusions in a homogeneous and isotropic matrix phase was used to study the effects of tubule orientation on the elastic properties of dentine. Closed-form expressions for the five independent elastic constants of dentine were derived in terms of tubule concentration, and the Young’s moduli and Poisson ratios of peri- and intertubular dentine. An atomic-force microscope indentation technique determined the Young’s moduli of the peri- and intertubular dentine as approx. 30 and 15 GPa, respectively. Over the natural variation in tubule density found in dentine, there was only a slight variation in the axial and transverse shear moduli with position in the tooth, and there was no measurable effect of tubule orientation. It was concluded that tubule orientation has no appreciable effect on the elastic behaviour of normal dentine, and that the elastic properties of healthy dentine can be modelled as an isotropic continuum with a Young’s modulus of approx. 16 GPa and a shear modulus of 6.2 GPa.</description><identifier>ISSN: 0003-9969</identifier><identifier>EISSN: 1879-1506</identifier><identifier>DOI: 10.1016/S0003-9969(99)00080-1</identifier><identifier>PMID: 10530914</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Atomic-force microscopy ; Dentin - physiology ; Dentine ; Dentistry ; Elasticity ; Humans ; Indentation ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Mathematics ; Mechanical properties ; Micromechanics ; Microscopy, Atomic Force - instrumentation ; Microscopy, Atomic Force - statistics & numerical data ; Models, Biological ; Molar, Third ; Shear modulus ; Young’s modulus</subject><ispartof>Archives of oral biology, 1999-10, Vol.44 (10), p.813-822</ispartof><rights>1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-9e08a2985f10ec19b768bcb73f05e2b875ec8c565ea48cf9ce2f90369dcf4a823</citedby><cites>FETCH-LOGICAL-c498t-9e08a2985f10ec19b768bcb73f05e2b875ec8c565ea48cf9ce2f90369dcf4a823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0003-9969(99)00080-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10530914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/8421$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kinney, J.H</creatorcontrib><creatorcontrib>Balooch, M</creatorcontrib><creatorcontrib>Marshall, G.W</creatorcontrib><creatorcontrib>Marshall, S.J</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>A micromechanics model of the elastic properties of human dentine</title><title>Archives of oral biology</title><addtitle>Arch Oral Biol</addtitle><description>A generalized, self-consistent model of cylindrical inclusions in a homogeneous and isotropic matrix phase was used to study the effects of tubule orientation on the elastic properties of dentine. Closed-form expressions for the five independent elastic constants of dentine were derived in terms of tubule concentration, and the Young’s moduli and Poisson ratios of peri- and intertubular dentine. An atomic-force microscope indentation technique determined the Young’s moduli of the peri- and intertubular dentine as approx. 30 and 15 GPa, respectively. Over the natural variation in tubule density found in dentine, there was only a slight variation in the axial and transverse shear moduli with position in the tooth, and there was no measurable effect of tubule orientation. It was concluded that tubule orientation has no appreciable effect on the elastic behaviour of normal dentine, and that the elastic properties of healthy dentine can be modelled as an isotropic continuum with a Young’s modulus of approx. 16 GPa and a shear modulus of 6.2 GPa.</description><subject>Atomic-force microscopy</subject><subject>Dentin - physiology</subject><subject>Dentine</subject><subject>Dentistry</subject><subject>Elasticity</subject><subject>Humans</subject><subject>Indentation</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Mathematics</subject><subject>Mechanical properties</subject><subject>Micromechanics</subject><subject>Microscopy, Atomic Force - instrumentation</subject><subject>Microscopy, Atomic Force - statistics & numerical data</subject><subject>Models, Biological</subject><subject>Molar, Third</subject><subject>Shear modulus</subject><subject>Young’s modulus</subject><issn>0003-9969</issn><issn>1879-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1KxDAURoMozjj6CGpXootq0jZtspJh8A8GXKjrkN7eMpG2GZtU8O1NpyLu3CRccpLvyyHklNFrRll-80IpTWMpc3kp5VUYBI3ZHpkzUciYcZrvk_kvMiNHzr2Hkec5OyQzRnlKJcvmZLmMWgO9bRE2ujPgotZW2ES2jvwGI2y08waibW-32HuDbjzZDK3uogo7bzo8Jge1bhye_OwL8nZ_97p6jNfPD0-r5TqGTAofS6RCJ1LwmlEEJssiFyWURVpTjkkpCo4ggOccdSagloBJLWmaywrqTIskXZDz6V0bGikHxofKYLsOwSuRJSwQFxMR2n4M6LxqjQNsGt2hHZwqqOAiy9IA8gkMH3eux1pte9Pq_ksxqka7amdXjerConZ21Rhw9hMwlC1Wf25NOgNwOwEYRHwa7Mee2AFWph9rVtb8E_EN8RKJSQ</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Kinney, J.H</creator><creator>Balooch, M</creator><creator>Marshall, G.W</creator><creator>Marshall, S.J</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>19991001</creationdate><title>A micromechanics model of the elastic properties of human dentine</title><author>Kinney, J.H ; Balooch, M ; Marshall, G.W ; Marshall, S.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-9e08a2985f10ec19b768bcb73f05e2b875ec8c565ea48cf9ce2f90369dcf4a823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Atomic-force microscopy</topic><topic>Dentin - physiology</topic><topic>Dentine</topic><topic>Dentistry</topic><topic>Elasticity</topic><topic>Humans</topic><topic>Indentation</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Mathematics</topic><topic>Mechanical properties</topic><topic>Micromechanics</topic><topic>Microscopy, Atomic Force - instrumentation</topic><topic>Microscopy, Atomic Force - statistics & numerical data</topic><topic>Models, Biological</topic><topic>Molar, Third</topic><topic>Shear modulus</topic><topic>Young’s modulus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinney, J.H</creatorcontrib><creatorcontrib>Balooch, M</creatorcontrib><creatorcontrib>Marshall, G.W</creatorcontrib><creatorcontrib>Marshall, S.J</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Archives of oral biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinney, J.H</au><au>Balooch, M</au><au>Marshall, G.W</au><au>Marshall, S.J</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A micromechanics model of the elastic properties of human dentine</atitle><jtitle>Archives of oral biology</jtitle><addtitle>Arch Oral Biol</addtitle><date>1999-10-01</date><risdate>1999</risdate><volume>44</volume><issue>10</issue><spage>813</spage><epage>822</epage><pages>813-822</pages><issn>0003-9969</issn><eissn>1879-1506</eissn><abstract>A generalized, self-consistent model of cylindrical inclusions in a homogeneous and isotropic matrix phase was used to study the effects of tubule orientation on the elastic properties of dentine. Closed-form expressions for the five independent elastic constants of dentine were derived in terms of tubule concentration, and the Young’s moduli and Poisson ratios of peri- and intertubular dentine. An atomic-force microscope indentation technique determined the Young’s moduli of the peri- and intertubular dentine as approx. 30 and 15 GPa, respectively. Over the natural variation in tubule density found in dentine, there was only a slight variation in the axial and transverse shear moduli with position in the tooth, and there was no measurable effect of tubule orientation. It was concluded that tubule orientation has no appreciable effect on the elastic behaviour of normal dentine, and that the elastic properties of healthy dentine can be modelled as an isotropic continuum with a Young’s modulus of approx. 16 GPa and a shear modulus of 6.2 GPa.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>10530914</pmid><doi>10.1016/S0003-9969(99)00080-1</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9969 |
ispartof | Archives of oral biology, 1999-10, Vol.44 (10), p.813-822 |
issn | 0003-9969 1879-1506 |
language | eng |
recordid | cdi_osti_scitechconnect_8421 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Atomic-force microscopy Dentin - physiology Dentine Dentistry Elasticity Humans Indentation INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Mathematics Mechanical properties Micromechanics Microscopy, Atomic Force - instrumentation Microscopy, Atomic Force - statistics & numerical data Models, Biological Molar, Third Shear modulus Young’s modulus |
title | A micromechanics model of the elastic properties of human dentine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20micromechanics%20model%20of%20the%20elastic%20properties%20of%20human%20dentine&rft.jtitle=Archives%20of%20oral%20biology&rft.au=Kinney,%20J.H&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=1999-10-01&rft.volume=44&rft.issue=10&rft.spage=813&rft.epage=822&rft.pages=813-822&rft.issn=0003-9969&rft.eissn=1879-1506&rft_id=info:doi/10.1016/S0003-9969(99)00080-1&rft_dat=%3Cproquest_osti_%3E70858443%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70858443&rft_id=info:pmid/10530914&rft_els_id=S0003996999000801&rfr_iscdi=true |