Native vacancy migrations in zircon

Energy minimization methods were used to simulate the migration of Zr, Si, and O vacancies in zircon (ZrSiO 4). Two sets of interatomic potentials were employed for comparison: one with O–Si–O three-body terms for the SiO 4, and one without. Results for Si were inconclusive, but consistent with main...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 1999-07, Vol.273 (2), p.164-170
Hauptverfasser: Williford, R.E, Weber, W.J, Devanathan, R, Cormack, A.N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170
container_issue 2
container_start_page 164
container_title Journal of nuclear materials
container_volume 273
creator Williford, R.E
Weber, W.J
Devanathan, R
Cormack, A.N
description Energy minimization methods were used to simulate the migration of Zr, Si, and O vacancies in zircon (ZrSiO 4). Two sets of interatomic potentials were employed for comparison: one with O–Si–O three-body terms for the SiO 4, and one without. Results for Si were inconclusive, but consistent with maintaining the integrity of the SiO 4 molecular units. Both Zr and O vacancies can migrate on three-dimensional sublattice networks, thus supporting the experimentally observed diffusional isotropy. The predicted Zr vacancy migration energy (1.16–1.38 eV) was in good agreement with experiment if supplemented by Zr vacancy formation via Schottky or Frenkel defects (6.21–12.28 eV/defect). Oxygen vacancy migration energies were predicted to be 0.99–1.16 eV, somewhat lower than the experimental value of 4.64 eV measured in natural zircons, which thus may include significant contributions from vacancy formation mechanisms at 3.31–6.52 eV/defect.
doi_str_mv 10.1016/S0022-3115(99)00026-4
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_837770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311599000264</els_id><sourcerecordid>27051841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-e3b699b4d2702a42013986f17f792cabd7e7e35e2bc736ce0ad5ab049f7a853</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKGiiB6q-WiS5rTI4hcseljvIU2nGum2a9JdWH-96XbRo6dhhmfmHR6ETgm-IZiI2znGlKaMEH6l1DWOnUizPTQiuWRpllO8j0a_yCE6CuEzQlxhPkLnL6Zza0jWxprGbpKFe_dx0jYhcU3y7bxtm2N0UJk6wMmujtH84f5t-pTOXh-fp3ez1DLFuhRYIZQqspJKTE1GMWEqFxWRlVTUmqKUIIFxoIWVTFjApuSmwJmqpMk5G6Oz4WobOqeDdR3Yj5jegO10zqSUODKXA7P07dcKQqcXLlioa9NAuwo6JnOSZySCfACtb0PwUOmldwvjN5pg3UvTW2m6N6KV0ltpOot7F7sAE6ypKx-luPC3nGMmRI9NBgyijrUD3_8LjYXS-f7dsnX_BP0AMuJ-iA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27051841</pqid></control><display><type>article</type><title>Native vacancy migrations in zircon</title><source>Access via ScienceDirect (Elsevier)</source><creator>Williford, R.E ; Weber, W.J ; Devanathan, R ; Cormack, A.N</creator><creatorcontrib>Williford, R.E ; Weber, W.J ; Devanathan, R ; Cormack, A.N ; Pacific Northwest National Lab., Richland, WA ; Alfred University, Alfred, NY (US)</creatorcontrib><description>Energy minimization methods were used to simulate the migration of Zr, Si, and O vacancies in zircon (ZrSiO 4). Two sets of interatomic potentials were employed for comparison: one with O–Si–O three-body terms for the SiO 4, and one without. Results for Si were inconclusive, but consistent with maintaining the integrity of the SiO 4 molecular units. Both Zr and O vacancies can migrate on three-dimensional sublattice networks, thus supporting the experimentally observed diffusional isotropy. The predicted Zr vacancy migration energy (1.16–1.38 eV) was in good agreement with experiment if supplemented by Zr vacancy formation via Schottky or Frenkel defects (6.21–12.28 eV/defect). Oxygen vacancy migration energies were predicted to be 0.99–1.16 eV, somewhat lower than the experimental value of 4.64 eV measured in natural zircons, which thus may include significant contributions from vacancy formation mechanisms at 3.31–6.52 eV/defect.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/S0022-3115(99)00026-4</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Installations for energy generation and conversion: thermal and electrical energy ; MASS TRANSFER ; MATERIALS SCIENCE ; VACANCIES ; ZIRCON</subject><ispartof>Journal of nuclear materials, 1999-07, Vol.273 (2), p.164-170</ispartof><rights>1999 Elsevier Science B.V.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-e3b699b4d2702a42013986f17f792cabd7e7e35e2bc736ce0ad5ab049f7a853</citedby><cites>FETCH-LOGICAL-c393t-e3b699b4d2702a42013986f17f792cabd7e7e35e2bc736ce0ad5ab049f7a853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0022-3115(99)00026-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1803664$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/837770$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Williford, R.E</creatorcontrib><creatorcontrib>Weber, W.J</creatorcontrib><creatorcontrib>Devanathan, R</creatorcontrib><creatorcontrib>Cormack, A.N</creatorcontrib><creatorcontrib>Pacific Northwest National Lab., Richland, WA</creatorcontrib><creatorcontrib>Alfred University, Alfred, NY (US)</creatorcontrib><title>Native vacancy migrations in zircon</title><title>Journal of nuclear materials</title><description>Energy minimization methods were used to simulate the migration of Zr, Si, and O vacancies in zircon (ZrSiO 4). Two sets of interatomic potentials were employed for comparison: one with O–Si–O three-body terms for the SiO 4, and one without. Results for Si were inconclusive, but consistent with maintaining the integrity of the SiO 4 molecular units. Both Zr and O vacancies can migrate on three-dimensional sublattice networks, thus supporting the experimentally observed diffusional isotropy. The predicted Zr vacancy migration energy (1.16–1.38 eV) was in good agreement with experiment if supplemented by Zr vacancy formation via Schottky or Frenkel defects (6.21–12.28 eV/defect). Oxygen vacancy migration energies were predicted to be 0.99–1.16 eV, somewhat lower than the experimental value of 4.64 eV measured in natural zircons, which thus may include significant contributions from vacancy formation mechanisms at 3.31–6.52 eV/defect.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>MASS TRANSFER</subject><subject>MATERIALS SCIENCE</subject><subject>VACANCIES</subject><subject>ZIRCON</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKGiiB6q-WiS5rTI4hcseljvIU2nGum2a9JdWH-96XbRo6dhhmfmHR6ETgm-IZiI2znGlKaMEH6l1DWOnUizPTQiuWRpllO8j0a_yCE6CuEzQlxhPkLnL6Zza0jWxprGbpKFe_dx0jYhcU3y7bxtm2N0UJk6wMmujtH84f5t-pTOXh-fp3ez1DLFuhRYIZQqspJKTE1GMWEqFxWRlVTUmqKUIIFxoIWVTFjApuSmwJmqpMk5G6Oz4WobOqeDdR3Yj5jegO10zqSUODKXA7P07dcKQqcXLlioa9NAuwo6JnOSZySCfACtb0PwUOmldwvjN5pg3UvTW2m6N6KV0ltpOot7F7sAE6ypKx-luPC3nGMmRI9NBgyijrUD3_8LjYXS-f7dsnX_BP0AMuJ-iA</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Williford, R.E</creator><creator>Weber, W.J</creator><creator>Devanathan, R</creator><creator>Cormack, A.N</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Science B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>19990701</creationdate><title>Native vacancy migrations in zircon</title><author>Williford, R.E ; Weber, W.J ; Devanathan, R ; Cormack, A.N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-e3b699b4d2702a42013986f17f792cabd7e7e35e2bc736ce0ad5ab049f7a853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>MASS TRANSFER</topic><topic>MATERIALS SCIENCE</topic><topic>VACANCIES</topic><topic>ZIRCON</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williford, R.E</creatorcontrib><creatorcontrib>Weber, W.J</creatorcontrib><creatorcontrib>Devanathan, R</creatorcontrib><creatorcontrib>Cormack, A.N</creatorcontrib><creatorcontrib>Pacific Northwest National Lab., Richland, WA</creatorcontrib><creatorcontrib>Alfred University, Alfred, NY (US)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williford, R.E</au><au>Weber, W.J</au><au>Devanathan, R</au><au>Cormack, A.N</au><aucorp>Pacific Northwest National Lab., Richland, WA</aucorp><aucorp>Alfred University, Alfred, NY (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Native vacancy migrations in zircon</atitle><jtitle>Journal of nuclear materials</jtitle><date>1999-07-01</date><risdate>1999</risdate><volume>273</volume><issue>2</issue><spage>164</spage><epage>170</epage><pages>164-170</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>Energy minimization methods were used to simulate the migration of Zr, Si, and O vacancies in zircon (ZrSiO 4). Two sets of interatomic potentials were employed for comparison: one with O–Si–O three-body terms for the SiO 4, and one without. Results for Si were inconclusive, but consistent with maintaining the integrity of the SiO 4 molecular units. Both Zr and O vacancies can migrate on three-dimensional sublattice networks, thus supporting the experimentally observed diffusional isotropy. The predicted Zr vacancy migration energy (1.16–1.38 eV) was in good agreement with experiment if supplemented by Zr vacancy formation via Schottky or Frenkel defects (6.21–12.28 eV/defect). Oxygen vacancy migration energies were predicted to be 0.99–1.16 eV, somewhat lower than the experimental value of 4.64 eV measured in natural zircons, which thus may include significant contributions from vacancy formation mechanisms at 3.31–6.52 eV/defect.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0022-3115(99)00026-4</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 1999-07, Vol.273 (2), p.164-170
issn 0022-3115
1873-4820
language eng
recordid cdi_osti_scitechconnect_837770
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Installations for energy generation and conversion: thermal and electrical energy
MASS TRANSFER
MATERIALS SCIENCE
VACANCIES
ZIRCON
title Native vacancy migrations in zircon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Native%20vacancy%20migrations%20in%20zircon&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Williford,%20R.E&rft.aucorp=Pacific%20Northwest%20National%20Lab.,%20Richland,%20WA&rft.date=1999-07-01&rft.volume=273&rft.issue=2&rft.spage=164&rft.epage=170&rft.pages=164-170&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/S0022-3115(99)00026-4&rft_dat=%3Cproquest_osti_%3E27051841%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27051841&rft_id=info:pmid/&rft_els_id=S0022311599000264&rfr_iscdi=true