Interface state density and channel mobility for 4H-SiC MOSFETs with nitrogen passivation
Interface state density and channel mobility have been characterized for 4H-SiC MOSFETs fabricated with dry thermal oxides and subsequently passivated with nitric oxide. The interface trap density at 0.1 eV below the conduction band edge decreases from approximately 8×10 12 to 1×10 12 eV −1 cm −2 fo...
Gespeichert in:
Veröffentlicht in: | Applied surface science 2001-12, Vol.184 (1), p.399-403 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 403 |
---|---|
container_issue | 1 |
container_start_page | 399 |
container_title | Applied surface science |
container_volume | 184 |
creator | Chung, G.Y. Williams, J.R. Tin, C.C. McDonald, K. Farmer, D. Chanana, R.K. Pantelides, S.T. Holland, O.W. Feldman, L.C. |
description | Interface state density and channel mobility have been characterized for 4H-SiC MOSFETs fabricated with dry thermal oxides and subsequently passivated with nitric oxide. The interface trap density at 0.1
eV below the conduction band edge decreases from approximately 8×10
12 to
1×10
12
eV
−1
cm
−2
following anneals in nitric oxide (NO) at 1175
°C for 2
h. The room temperature field effect channel mobility increases by an order of magnitude to approximately 35
cm
2/V
s following the passivation anneal. The field effect channel mobility of passivated MOSFETs shows almost no change with increasing temperature, while the mobility for unpassivated devices increases with increasing temperature and is thermally activated (∼
T
1.9) due to decreased Coulomb scattering by electrons trapped at the acceptor-like interface states near the conduction band. Over the temperature range 300–473
K, threshold voltage changes of about −0.8 and −3.7
V, respectively, are observed for devices processed with and without NO passivation. |
doi_str_mv | 10.1016/S0169-4332(01)00684-5 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_829492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433201006845</els_id><sourcerecordid>S0169433201006845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a4d95ff15cb1619e323eb741466abf58fc876a146c580071de563b7cab779fc63</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgrf4EIR4EPawmm4_NnkSKH4VKD9WDp5DNJjayzZYkVPrvzbaiR-cwQ2bey7x5AJxjdIMR5reLnOqCElJeIXyNEBe0YAdghEVFCsYEPQSjX8gxOInxEyFc5ukIvE99MsEqbWBMKhnYGh9d2kLlW6iXynvTwVXfuG5o2j5A-lws3AS-zBePD68Rfrm0hN6l0H8YD9cqRrdRyfX-FBxZ1UVz9lPH4C0TJs_FbP40ndzPCk04SYWibc2sxUw3mOPakJKYpqKYcq4ay4TVouIqPzUTCFW4NYyTptKqqaraak7G4GL_bx-Tk1G7ZPRS91m4TlKUNa3LjGF7jA59jMFYuQ5upcJWYiQHD-XOQzkYJBGWOw8ly7zLPS_fpVVng_LaxT8yIYKTHGNwt8eZfOjGmTDoMF6b1oVBRtu7fzZ9AwwHhVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interface state density and channel mobility for 4H-SiC MOSFETs with nitrogen passivation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chung, G.Y. ; Williams, J.R. ; Tin, C.C. ; McDonald, K. ; Farmer, D. ; Chanana, R.K. ; Pantelides, S.T. ; Holland, O.W. ; Feldman, L.C.</creator><creatorcontrib>Chung, G.Y. ; Williams, J.R. ; Tin, C.C. ; McDonald, K. ; Farmer, D. ; Chanana, R.K. ; Pantelides, S.T. ; Holland, O.W. ; Feldman, L.C. ; ORNL Oak Ridge National Laboratory</creatorcontrib><description>Interface state density and channel mobility have been characterized for 4H-SiC MOSFETs fabricated with dry thermal oxides and subsequently passivated with nitric oxide. The interface trap density at 0.1
eV below the conduction band edge decreases from approximately 8×10
12 to
1×10
12
eV
−1
cm
−2
following anneals in nitric oxide (NO) at 1175
°C for 2
h. The room temperature field effect channel mobility increases by an order of magnitude to approximately 35
cm
2/V
s following the passivation anneal. The field effect channel mobility of passivated MOSFETs shows almost no change with increasing temperature, while the mobility for unpassivated devices increases with increasing temperature and is thermally activated (∼
T
1.9) due to decreased Coulomb scattering by electrons trapped at the acceptor-like interface states near the conduction band. Over the temperature range 300–473
K, threshold voltage changes of about −0.8 and −3.7
V, respectively, are observed for devices processed with and without NO passivation.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/S0169-4332(01)00684-5</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in interface structures ; Exact sciences and technology ; Iii-v semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions ; Interface states ; MATERIALS ; MATERIALS SCIENCE ; Mobility ; MOSFETs ; Nitration ; NITROGEN ; ORNL ; PASSIVATION ; Physics ; Silicon carbide ; Threshold voltage</subject><ispartof>Applied surface science, 2001-12, Vol.184 (1), p.399-403</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a4d95ff15cb1619e323eb741466abf58fc876a146c580071de563b7cab779fc63</citedby><cites>FETCH-LOGICAL-c363t-a4d95ff15cb1619e323eb741466abf58fc876a146c580071de563b7cab779fc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0169-4332(01)00684-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13386333$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/829492$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, G.Y.</creatorcontrib><creatorcontrib>Williams, J.R.</creatorcontrib><creatorcontrib>Tin, C.C.</creatorcontrib><creatorcontrib>McDonald, K.</creatorcontrib><creatorcontrib>Farmer, D.</creatorcontrib><creatorcontrib>Chanana, R.K.</creatorcontrib><creatorcontrib>Pantelides, S.T.</creatorcontrib><creatorcontrib>Holland, O.W.</creatorcontrib><creatorcontrib>Feldman, L.C.</creatorcontrib><creatorcontrib>ORNL Oak Ridge National Laboratory</creatorcontrib><title>Interface state density and channel mobility for 4H-SiC MOSFETs with nitrogen passivation</title><title>Applied surface science</title><description>Interface state density and channel mobility have been characterized for 4H-SiC MOSFETs fabricated with dry thermal oxides and subsequently passivated with nitric oxide. The interface trap density at 0.1
eV below the conduction band edge decreases from approximately 8×10
12 to
1×10
12
eV
−1
cm
−2
following anneals in nitric oxide (NO) at 1175
°C for 2
h. The room temperature field effect channel mobility increases by an order of magnitude to approximately 35
cm
2/V
s following the passivation anneal. The field effect channel mobility of passivated MOSFETs shows almost no change with increasing temperature, while the mobility for unpassivated devices increases with increasing temperature and is thermally activated (∼
T
1.9) due to decreased Coulomb scattering by electrons trapped at the acceptor-like interface states near the conduction band. Over the temperature range 300–473
K, threshold voltage changes of about −0.8 and −3.7
V, respectively, are observed for devices processed with and without NO passivation.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in interface structures</subject><subject>Exact sciences and technology</subject><subject>Iii-v semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions</subject><subject>Interface states</subject><subject>MATERIALS</subject><subject>MATERIALS SCIENCE</subject><subject>Mobility</subject><subject>MOSFETs</subject><subject>Nitration</subject><subject>NITROGEN</subject><subject>ORNL</subject><subject>PASSIVATION</subject><subject>Physics</subject><subject>Silicon carbide</subject><subject>Threshold voltage</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJgrf4EIR4EPawmm4_NnkSKH4VKD9WDp5DNJjayzZYkVPrvzbaiR-cwQ2bey7x5AJxjdIMR5reLnOqCElJeIXyNEBe0YAdghEVFCsYEPQSjX8gxOInxEyFc5ukIvE99MsEqbWBMKhnYGh9d2kLlW6iXynvTwVXfuG5o2j5A-lws3AS-zBePD68Rfrm0hN6l0H8YD9cqRrdRyfX-FBxZ1UVz9lPH4C0TJs_FbP40ndzPCk04SYWibc2sxUw3mOPakJKYpqKYcq4ay4TVouIqPzUTCFW4NYyTptKqqaraak7G4GL_bx-Tk1G7ZPRS91m4TlKUNa3LjGF7jA59jMFYuQ5upcJWYiQHD-XOQzkYJBGWOw8ly7zLPS_fpVVng_LaxT8yIYKTHGNwt8eZfOjGmTDoMF6b1oVBRtu7fzZ9AwwHhVw</recordid><startdate>20011212</startdate><enddate>20011212</enddate><creator>Chung, G.Y.</creator><creator>Williams, J.R.</creator><creator>Tin, C.C.</creator><creator>McDonald, K.</creator><creator>Farmer, D.</creator><creator>Chanana, R.K.</creator><creator>Pantelides, S.T.</creator><creator>Holland, O.W.</creator><creator>Feldman, L.C.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20011212</creationdate><title>Interface state density and channel mobility for 4H-SiC MOSFETs with nitrogen passivation</title><author>Chung, G.Y. ; Williams, J.R. ; Tin, C.C. ; McDonald, K. ; Farmer, D. ; Chanana, R.K. ; Pantelides, S.T. ; Holland, O.W. ; Feldman, L.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a4d95ff15cb1619e323eb741466abf58fc876a146c580071de563b7cab779fc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in interface structures</topic><topic>Exact sciences and technology</topic><topic>Iii-v semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions</topic><topic>Interface states</topic><topic>MATERIALS</topic><topic>MATERIALS SCIENCE</topic><topic>Mobility</topic><topic>MOSFETs</topic><topic>Nitration</topic><topic>NITROGEN</topic><topic>ORNL</topic><topic>PASSIVATION</topic><topic>Physics</topic><topic>Silicon carbide</topic><topic>Threshold voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, G.Y.</creatorcontrib><creatorcontrib>Williams, J.R.</creatorcontrib><creatorcontrib>Tin, C.C.</creatorcontrib><creatorcontrib>McDonald, K.</creatorcontrib><creatorcontrib>Farmer, D.</creatorcontrib><creatorcontrib>Chanana, R.K.</creatorcontrib><creatorcontrib>Pantelides, S.T.</creatorcontrib><creatorcontrib>Holland, O.W.</creatorcontrib><creatorcontrib>Feldman, L.C.</creatorcontrib><creatorcontrib>ORNL Oak Ridge National Laboratory</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, G.Y.</au><au>Williams, J.R.</au><au>Tin, C.C.</au><au>McDonald, K.</au><au>Farmer, D.</au><au>Chanana, R.K.</au><au>Pantelides, S.T.</au><au>Holland, O.W.</au><au>Feldman, L.C.</au><aucorp>ORNL Oak Ridge National Laboratory</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface state density and channel mobility for 4H-SiC MOSFETs with nitrogen passivation</atitle><jtitle>Applied surface science</jtitle><date>2001-12-12</date><risdate>2001</risdate><volume>184</volume><issue>1</issue><spage>399</spage><epage>403</epage><pages>399-403</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>Interface state density and channel mobility have been characterized for 4H-SiC MOSFETs fabricated with dry thermal oxides and subsequently passivated with nitric oxide. The interface trap density at 0.1
eV below the conduction band edge decreases from approximately 8×10
12 to
1×10
12
eV
−1
cm
−2
following anneals in nitric oxide (NO) at 1175
°C for 2
h. The room temperature field effect channel mobility increases by an order of magnitude to approximately 35
cm
2/V
s following the passivation anneal. The field effect channel mobility of passivated MOSFETs shows almost no change with increasing temperature, while the mobility for unpassivated devices increases with increasing temperature and is thermally activated (∼
T
1.9) due to decreased Coulomb scattering by electrons trapped at the acceptor-like interface states near the conduction band. Over the temperature range 300–473
K, threshold voltage changes of about −0.8 and −3.7
V, respectively, are observed for devices processed with and without NO passivation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0169-4332(01)00684-5</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-4332 |
ispartof | Applied surface science, 2001-12, Vol.184 (1), p.399-403 |
issn | 0169-4332 1873-5584 |
language | eng |
recordid | cdi_osti_scitechconnect_829492 |
source | Access via ScienceDirect (Elsevier) |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport in interface structures Exact sciences and technology Iii-v semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions Interface states MATERIALS MATERIALS SCIENCE Mobility MOSFETs Nitration NITROGEN ORNL PASSIVATION Physics Silicon carbide Threshold voltage |
title | Interface state density and channel mobility for 4H-SiC MOSFETs with nitrogen passivation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20state%20density%20and%20channel%20mobility%20for%204H-SiC%20MOSFETs%20with%20nitrogen%20passivation&rft.jtitle=Applied%20surface%20science&rft.au=Chung,%20G.Y.&rft.aucorp=ORNL%20Oak%20Ridge%20National%20Laboratory&rft.date=2001-12-12&rft.volume=184&rft.issue=1&rft.spage=399&rft.epage=403&rft.pages=399-403&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/S0169-4332(01)00684-5&rft_dat=%3Celsevier_osti_%3ES0169433201006845%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0169433201006845&rfr_iscdi=true |