Interface state density and channel mobility for 4H-SiC MOSFETs with nitrogen passivation

Interface state density and channel mobility have been characterized for 4H-SiC MOSFETs fabricated with dry thermal oxides and subsequently passivated with nitric oxide. The interface trap density at 0.1 eV below the conduction band edge decreases from approximately 8×10 12 to 1×10 12 eV −1 cm −2 fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2001-12, Vol.184 (1), p.399-403
Hauptverfasser: Chung, G.Y., Williams, J.R., Tin, C.C., McDonald, K., Farmer, D., Chanana, R.K., Pantelides, S.T., Holland, O.W., Feldman, L.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 403
container_issue 1
container_start_page 399
container_title Applied surface science
container_volume 184
creator Chung, G.Y.
Williams, J.R.
Tin, C.C.
McDonald, K.
Farmer, D.
Chanana, R.K.
Pantelides, S.T.
Holland, O.W.
Feldman, L.C.
description Interface state density and channel mobility have been characterized for 4H-SiC MOSFETs fabricated with dry thermal oxides and subsequently passivated with nitric oxide. The interface trap density at 0.1 eV below the conduction band edge decreases from approximately 8×10 12 to 1×10 12 eV −1 cm −2 following anneals in nitric oxide (NO) at 1175 °C for 2 h. The room temperature field effect channel mobility increases by an order of magnitude to approximately 35 cm 2/V s following the passivation anneal. The field effect channel mobility of passivated MOSFETs shows almost no change with increasing temperature, while the mobility for unpassivated devices increases with increasing temperature and is thermally activated (∼ T 1.9) due to decreased Coulomb scattering by electrons trapped at the acceptor-like interface states near the conduction band. Over the temperature range 300–473 K, threshold voltage changes of about −0.8 and −3.7 V, respectively, are observed for devices processed with and without NO passivation.
doi_str_mv 10.1016/S0169-4332(01)00684-5
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_829492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433201006845</els_id><sourcerecordid>S0169433201006845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a4d95ff15cb1619e323eb741466abf58fc876a146c580071de563b7cab779fc63</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgrf4EIR4EPawmm4_NnkSKH4VKD9WDp5DNJjayzZYkVPrvzbaiR-cwQ2bey7x5AJxjdIMR5reLnOqCElJeIXyNEBe0YAdghEVFCsYEPQSjX8gxOInxEyFc5ukIvE99MsEqbWBMKhnYGh9d2kLlW6iXynvTwVXfuG5o2j5A-lws3AS-zBePD68Rfrm0hN6l0H8YD9cqRrdRyfX-FBxZ1UVz9lPH4C0TJs_FbP40ndzPCk04SYWibc2sxUw3mOPakJKYpqKYcq4ay4TVouIqPzUTCFW4NYyTptKqqaraak7G4GL_bx-Tk1G7ZPRS91m4TlKUNa3LjGF7jA59jMFYuQ5upcJWYiQHD-XOQzkYJBGWOw8ly7zLPS_fpVVng_LaxT8yIYKTHGNwt8eZfOjGmTDoMF6b1oVBRtu7fzZ9AwwHhVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interface state density and channel mobility for 4H-SiC MOSFETs with nitrogen passivation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chung, G.Y. ; Williams, J.R. ; Tin, C.C. ; McDonald, K. ; Farmer, D. ; Chanana, R.K. ; Pantelides, S.T. ; Holland, O.W. ; Feldman, L.C.</creator><creatorcontrib>Chung, G.Y. ; Williams, J.R. ; Tin, C.C. ; McDonald, K. ; Farmer, D. ; Chanana, R.K. ; Pantelides, S.T. ; Holland, O.W. ; Feldman, L.C. ; ORNL Oak Ridge National Laboratory</creatorcontrib><description>Interface state density and channel mobility have been characterized for 4H-SiC MOSFETs fabricated with dry thermal oxides and subsequently passivated with nitric oxide. The interface trap density at 0.1 eV below the conduction band edge decreases from approximately 8×10 12 to 1×10 12 eV −1 cm −2 following anneals in nitric oxide (NO) at 1175 °C for 2 h. The room temperature field effect channel mobility increases by an order of magnitude to approximately 35 cm 2/V s following the passivation anneal. The field effect channel mobility of passivated MOSFETs shows almost no change with increasing temperature, while the mobility for unpassivated devices increases with increasing temperature and is thermally activated (∼ T 1.9) due to decreased Coulomb scattering by electrons trapped at the acceptor-like interface states near the conduction band. Over the temperature range 300–473 K, threshold voltage changes of about −0.8 and −3.7 V, respectively, are observed for devices processed with and without NO passivation.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/S0169-4332(01)00684-5</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in interface structures ; Exact sciences and technology ; Iii-v semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions ; Interface states ; MATERIALS ; MATERIALS SCIENCE ; Mobility ; MOSFETs ; Nitration ; NITROGEN ; ORNL ; PASSIVATION ; Physics ; Silicon carbide ; Threshold voltage</subject><ispartof>Applied surface science, 2001-12, Vol.184 (1), p.399-403</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a4d95ff15cb1619e323eb741466abf58fc876a146c580071de563b7cab779fc63</citedby><cites>FETCH-LOGICAL-c363t-a4d95ff15cb1619e323eb741466abf58fc876a146c580071de563b7cab779fc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0169-4332(01)00684-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13386333$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/829492$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, G.Y.</creatorcontrib><creatorcontrib>Williams, J.R.</creatorcontrib><creatorcontrib>Tin, C.C.</creatorcontrib><creatorcontrib>McDonald, K.</creatorcontrib><creatorcontrib>Farmer, D.</creatorcontrib><creatorcontrib>Chanana, R.K.</creatorcontrib><creatorcontrib>Pantelides, S.T.</creatorcontrib><creatorcontrib>Holland, O.W.</creatorcontrib><creatorcontrib>Feldman, L.C.</creatorcontrib><creatorcontrib>ORNL Oak Ridge National Laboratory</creatorcontrib><title>Interface state density and channel mobility for 4H-SiC MOSFETs with nitrogen passivation</title><title>Applied surface science</title><description>Interface state density and channel mobility have been characterized for 4H-SiC MOSFETs fabricated with dry thermal oxides and subsequently passivated with nitric oxide. The interface trap density at 0.1 eV below the conduction band edge decreases from approximately 8×10 12 to 1×10 12 eV −1 cm −2 following anneals in nitric oxide (NO) at 1175 °C for 2 h. The room temperature field effect channel mobility increases by an order of magnitude to approximately 35 cm 2/V s following the passivation anneal. The field effect channel mobility of passivated MOSFETs shows almost no change with increasing temperature, while the mobility for unpassivated devices increases with increasing temperature and is thermally activated (∼ T 1.9) due to decreased Coulomb scattering by electrons trapped at the acceptor-like interface states near the conduction band. Over the temperature range 300–473 K, threshold voltage changes of about −0.8 and −3.7 V, respectively, are observed for devices processed with and without NO passivation.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in interface structures</subject><subject>Exact sciences and technology</subject><subject>Iii-v semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions</subject><subject>Interface states</subject><subject>MATERIALS</subject><subject>MATERIALS SCIENCE</subject><subject>Mobility</subject><subject>MOSFETs</subject><subject>Nitration</subject><subject>NITROGEN</subject><subject>ORNL</subject><subject>PASSIVATION</subject><subject>Physics</subject><subject>Silicon carbide</subject><subject>Threshold voltage</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJgrf4EIR4EPawmm4_NnkSKH4VKD9WDp5DNJjayzZYkVPrvzbaiR-cwQ2bey7x5AJxjdIMR5reLnOqCElJeIXyNEBe0YAdghEVFCsYEPQSjX8gxOInxEyFc5ukIvE99MsEqbWBMKhnYGh9d2kLlW6iXynvTwVXfuG5o2j5A-lws3AS-zBePD68Rfrm0hN6l0H8YD9cqRrdRyfX-FBxZ1UVz9lPH4C0TJs_FbP40ndzPCk04SYWibc2sxUw3mOPakJKYpqKYcq4ay4TVouIqPzUTCFW4NYyTptKqqaraak7G4GL_bx-Tk1G7ZPRS91m4TlKUNa3LjGF7jA59jMFYuQ5upcJWYiQHD-XOQzkYJBGWOw8ly7zLPS_fpVVng_LaxT8yIYKTHGNwt8eZfOjGmTDoMF6b1oVBRtu7fzZ9AwwHhVw</recordid><startdate>20011212</startdate><enddate>20011212</enddate><creator>Chung, G.Y.</creator><creator>Williams, J.R.</creator><creator>Tin, C.C.</creator><creator>McDonald, K.</creator><creator>Farmer, D.</creator><creator>Chanana, R.K.</creator><creator>Pantelides, S.T.</creator><creator>Holland, O.W.</creator><creator>Feldman, L.C.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20011212</creationdate><title>Interface state density and channel mobility for 4H-SiC MOSFETs with nitrogen passivation</title><author>Chung, G.Y. ; Williams, J.R. ; Tin, C.C. ; McDonald, K. ; Farmer, D. ; Chanana, R.K. ; Pantelides, S.T. ; Holland, O.W. ; Feldman, L.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a4d95ff15cb1619e323eb741466abf58fc876a146c580071de563b7cab779fc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in interface structures</topic><topic>Exact sciences and technology</topic><topic>Iii-v semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions</topic><topic>Interface states</topic><topic>MATERIALS</topic><topic>MATERIALS SCIENCE</topic><topic>Mobility</topic><topic>MOSFETs</topic><topic>Nitration</topic><topic>NITROGEN</topic><topic>ORNL</topic><topic>PASSIVATION</topic><topic>Physics</topic><topic>Silicon carbide</topic><topic>Threshold voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, G.Y.</creatorcontrib><creatorcontrib>Williams, J.R.</creatorcontrib><creatorcontrib>Tin, C.C.</creatorcontrib><creatorcontrib>McDonald, K.</creatorcontrib><creatorcontrib>Farmer, D.</creatorcontrib><creatorcontrib>Chanana, R.K.</creatorcontrib><creatorcontrib>Pantelides, S.T.</creatorcontrib><creatorcontrib>Holland, O.W.</creatorcontrib><creatorcontrib>Feldman, L.C.</creatorcontrib><creatorcontrib>ORNL Oak Ridge National Laboratory</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, G.Y.</au><au>Williams, J.R.</au><au>Tin, C.C.</au><au>McDonald, K.</au><au>Farmer, D.</au><au>Chanana, R.K.</au><au>Pantelides, S.T.</au><au>Holland, O.W.</au><au>Feldman, L.C.</au><aucorp>ORNL Oak Ridge National Laboratory</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface state density and channel mobility for 4H-SiC MOSFETs with nitrogen passivation</atitle><jtitle>Applied surface science</jtitle><date>2001-12-12</date><risdate>2001</risdate><volume>184</volume><issue>1</issue><spage>399</spage><epage>403</epage><pages>399-403</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>Interface state density and channel mobility have been characterized for 4H-SiC MOSFETs fabricated with dry thermal oxides and subsequently passivated with nitric oxide. The interface trap density at 0.1 eV below the conduction band edge decreases from approximately 8×10 12 to 1×10 12 eV −1 cm −2 following anneals in nitric oxide (NO) at 1175 °C for 2 h. The room temperature field effect channel mobility increases by an order of magnitude to approximately 35 cm 2/V s following the passivation anneal. The field effect channel mobility of passivated MOSFETs shows almost no change with increasing temperature, while the mobility for unpassivated devices increases with increasing temperature and is thermally activated (∼ T 1.9) due to decreased Coulomb scattering by electrons trapped at the acceptor-like interface states near the conduction band. Over the temperature range 300–473 K, threshold voltage changes of about −0.8 and −3.7 V, respectively, are observed for devices processed with and without NO passivation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0169-4332(01)00684-5</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2001-12, Vol.184 (1), p.399-403
issn 0169-4332
1873-5584
language eng
recordid cdi_osti_scitechconnect_829492
source Access via ScienceDirect (Elsevier)
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport in interface structures
Exact sciences and technology
Iii-v semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions
Interface states
MATERIALS
MATERIALS SCIENCE
Mobility
MOSFETs
Nitration
NITROGEN
ORNL
PASSIVATION
Physics
Silicon carbide
Threshold voltage
title Interface state density and channel mobility for 4H-SiC MOSFETs with nitrogen passivation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20state%20density%20and%20channel%20mobility%20for%204H-SiC%20MOSFETs%20with%20nitrogen%20passivation&rft.jtitle=Applied%20surface%20science&rft.au=Chung,%20G.Y.&rft.aucorp=ORNL%20Oak%20Ridge%20National%20Laboratory&rft.date=2001-12-12&rft.volume=184&rft.issue=1&rft.spage=399&rft.epage=403&rft.pages=399-403&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/S0169-4332(01)00684-5&rft_dat=%3Celsevier_osti_%3ES0169433201006845%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0169433201006845&rfr_iscdi=true