A solution method of unit commitment by artificial neural networks

The authors explore the possibility of applying the Hopfield neural network to combinatorial optimization problems in power systems, in particular to unit commitment. A large number of inequality constraints included in unit commitment can be handled by dedicated neural networks. As an exact mapping...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 1992-08, Vol.7 (3), p.974-981
Hauptverfasser: Sasaki, H., Watanabe, M., Kubokawa, J., Yorino, N., Yokoyama, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 981
container_issue 3
container_start_page 974
container_title IEEE transactions on power systems
container_volume 7
creator Sasaki, H.
Watanabe, M.
Kubokawa, J.
Yorino, N.
Yokoyama, R.
description The authors explore the possibility of applying the Hopfield neural network to combinatorial optimization problems in power systems, in particular to unit commitment. A large number of inequality constraints included in unit commitment can be handled by dedicated neural networks. As an exact mapping of the problem onto the neural network is impossible with the state of the art, a two-step solution method was developed. First, generators to be stored up at each period are determined by the network, and then their outputs are adjusted by a conventional algorithm. The proposed neural network could solve a large-scale unit commitment problem with 30 generators over 24 periods, and results obtained were very encouraging.< >
doi_str_mv 10.1109/59.207310
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_7281224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>207310</ieee_id><sourcerecordid>28572039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-e3938e2d25e02f5d51e07acdd2ca340ab1871688b4d7cce77432c795477b87183</originalsourceid><addsrcrecordid>eNqF0L1PwzAQBXALgUQpDKxMEQMSQ8rZiWNnLBVfUiUWmC3HuaiGJC62I9T_ntBUrExveD89nY6QSwoLSqG84-WCgcgoHJEZ5VymUIjymMxASp7KksMpOQvhAwCKsZiR-2USXDtE6_qkw7hxdeKaZOhtTIzrOhs77GNS7RLto22ssbpNehz8PuK385_hnJw0ug14ccg5eX98eFs9p-vXp5fVcp2aHGhMMSsziaxmHIE1vOYUQWhT18zoLAddUSloIWWV18IYFCLPmBElz4WoxkZmc3I97boQrQrGRjQb4_oeTVSCScpYPqKbCW29-xowRNXZYLBtdY9uCIpJLhiMp_wLuSwg2y_eTtB4F4LHRm297bTfKQrq9-eKl2r6-WivJmsR8c8dyh8Le3qN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25860324</pqid></control><display><type>article</type><title>A solution method of unit commitment by artificial neural networks</title><source>IEEE Electronic Library (IEL)</source><creator>Sasaki, H. ; Watanabe, M. ; Kubokawa, J. ; Yorino, N. ; Yokoyama, R.</creator><creatorcontrib>Sasaki, H. ; Watanabe, M. ; Kubokawa, J. ; Yorino, N. ; Yokoyama, R.</creatorcontrib><description>The authors explore the possibility of applying the Hopfield neural network to combinatorial optimization problems in power systems, in particular to unit commitment. A large number of inequality constraints included in unit commitment can be handled by dedicated neural networks. As an exact mapping of the problem onto the neural network is impossible with the state of the art, a two-step solution method was developed. First, generators to be stored up at each period are determined by the network, and then their outputs are adjusted by a conventional algorithm. The proposed neural network could solve a large-scale unit commitment problem with 30 generators over 24 periods, and results obtained were very encouraging.&lt; &gt;</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/59.207310</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>990200 -- Mathematics &amp; Computers ; ALGORITHMS ; ARTIFICIAL INTELLIGENCE ; Artificial neural networks ; Biological neural networks ; CONSTRAINTS ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Hopfield neural networks ; Linear programming ; MAPPING ; MATHEMATICAL LOGIC 240100 -- Power Systems-- (1990-) ; Neural networks ; Neurons ; OPTIMIZATION ; Power engineering and energy ; Power system interconnection ; Power system planning ; POWER SYSTEMS ; POWER TRANSMISSION AND DISTRIBUTION</subject><ispartof>IEEE transactions on power systems, 1992-08, Vol.7 (3), p.974-981</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-e3938e2d25e02f5d51e07acdd2ca340ab1871688b4d7cce77432c795477b87183</citedby><cites>FETCH-LOGICAL-c401t-e3938e2d25e02f5d51e07acdd2ca340ab1871688b4d7cce77432c795477b87183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/207310$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/207310$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/7281224$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sasaki, H.</creatorcontrib><creatorcontrib>Watanabe, M.</creatorcontrib><creatorcontrib>Kubokawa, J.</creatorcontrib><creatorcontrib>Yorino, N.</creatorcontrib><creatorcontrib>Yokoyama, R.</creatorcontrib><title>A solution method of unit commitment by artificial neural networks</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The authors explore the possibility of applying the Hopfield neural network to combinatorial optimization problems in power systems, in particular to unit commitment. A large number of inequality constraints included in unit commitment can be handled by dedicated neural networks. As an exact mapping of the problem onto the neural network is impossible with the state of the art, a two-step solution method was developed. First, generators to be stored up at each period are determined by the network, and then their outputs are adjusted by a conventional algorithm. The proposed neural network could solve a large-scale unit commitment problem with 30 generators over 24 periods, and results obtained were very encouraging.&lt; &gt;</description><subject>990200 -- Mathematics &amp; Computers</subject><subject>ALGORITHMS</subject><subject>ARTIFICIAL INTELLIGENCE</subject><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>CONSTRAINTS</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Hopfield neural networks</subject><subject>Linear programming</subject><subject>MAPPING</subject><subject>MATHEMATICAL LOGIC 240100 -- Power Systems-- (1990-)</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>OPTIMIZATION</subject><subject>Power engineering and energy</subject><subject>Power system interconnection</subject><subject>Power system planning</subject><subject>POWER SYSTEMS</subject><subject>POWER TRANSMISSION AND DISTRIBUTION</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqF0L1PwzAQBXALgUQpDKxMEQMSQ8rZiWNnLBVfUiUWmC3HuaiGJC62I9T_ntBUrExveD89nY6QSwoLSqG84-WCgcgoHJEZ5VymUIjymMxASp7KksMpOQvhAwCKsZiR-2USXDtE6_qkw7hxdeKaZOhtTIzrOhs77GNS7RLto22ssbpNehz8PuK385_hnJw0ug14ccg5eX98eFs9p-vXp5fVcp2aHGhMMSsziaxmHIE1vOYUQWhT18zoLAddUSloIWWV18IYFCLPmBElz4WoxkZmc3I97boQrQrGRjQb4_oeTVSCScpYPqKbCW29-xowRNXZYLBtdY9uCIpJLhiMp_wLuSwg2y_eTtB4F4LHRm297bTfKQrq9-eKl2r6-WivJmsR8c8dyh8Le3qN</recordid><startdate>19920801</startdate><enddate>19920801</enddate><creator>Sasaki, H.</creator><creator>Watanabe, M.</creator><creator>Kubokawa, J.</creator><creator>Yorino, N.</creator><creator>Yokoyama, R.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>OTOTI</scope></search><sort><creationdate>19920801</creationdate><title>A solution method of unit commitment by artificial neural networks</title><author>Sasaki, H. ; Watanabe, M. ; Kubokawa, J. ; Yorino, N. ; Yokoyama, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-e3938e2d25e02f5d51e07acdd2ca340ab1871688b4d7cce77432c795477b87183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>990200 -- Mathematics &amp; Computers</topic><topic>ALGORITHMS</topic><topic>ARTIFICIAL INTELLIGENCE</topic><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>CONSTRAINTS</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Hopfield neural networks</topic><topic>Linear programming</topic><topic>MAPPING</topic><topic>MATHEMATICAL LOGIC 240100 -- Power Systems-- (1990-)</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>OPTIMIZATION</topic><topic>Power engineering and energy</topic><topic>Power system interconnection</topic><topic>Power system planning</topic><topic>POWER SYSTEMS</topic><topic>POWER TRANSMISSION AND DISTRIBUTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sasaki, H.</creatorcontrib><creatorcontrib>Watanabe, M.</creatorcontrib><creatorcontrib>Kubokawa, J.</creatorcontrib><creatorcontrib>Yorino, N.</creatorcontrib><creatorcontrib>Yokoyama, R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sasaki, H.</au><au>Watanabe, M.</au><au>Kubokawa, J.</au><au>Yorino, N.</au><au>Yokoyama, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A solution method of unit commitment by artificial neural networks</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>1992-08-01</date><risdate>1992</risdate><volume>7</volume><issue>3</issue><spage>974</spage><epage>981</epage><pages>974-981</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The authors explore the possibility of applying the Hopfield neural network to combinatorial optimization problems in power systems, in particular to unit commitment. A large number of inequality constraints included in unit commitment can be handled by dedicated neural networks. As an exact mapping of the problem onto the neural network is impossible with the state of the art, a two-step solution method was developed. First, generators to be stored up at each period are determined by the network, and then their outputs are adjusted by a conventional algorithm. The proposed neural network could solve a large-scale unit commitment problem with 30 generators over 24 periods, and results obtained were very encouraging.&lt; &gt;</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/59.207310</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 1992-08, Vol.7 (3), p.974-981
issn 0885-8950
1558-0679
language eng
recordid cdi_osti_scitechconnect_7281224
source IEEE Electronic Library (IEL)
subjects 990200 -- Mathematics & Computers
ALGORITHMS
ARTIFICIAL INTELLIGENCE
Artificial neural networks
Biological neural networks
CONSTRAINTS
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
Hopfield neural networks
Linear programming
MAPPING
MATHEMATICAL LOGIC 240100 -- Power Systems-- (1990-)
Neural networks
Neurons
OPTIMIZATION
Power engineering and energy
Power system interconnection
Power system planning
POWER SYSTEMS
POWER TRANSMISSION AND DISTRIBUTION
title A solution method of unit commitment by artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20solution%20method%20of%20unit%20commitment%20by%20artificial%20neural%20networks&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Sasaki,%20H.&rft.date=1992-08-01&rft.volume=7&rft.issue=3&rft.spage=974&rft.epage=981&rft.pages=974-981&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/59.207310&rft_dat=%3Cproquest_RIE%3E28572039%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25860324&rft_id=info:pmid/&rft_ieee_id=207310&rfr_iscdi=true