When can identical particles collide ?

It is customary, when discussing configuration spaces of identical particles in two or more dimensions, to discard the configurations where two or more particles overlap, the justification being that the configuration space ceases to be a manifold at those points, and also to allow for nonbosonic st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D, Particles and fields Particles and fields, 1992-01, Vol.45 (2), p.687-696
Hauptverfasser: BOURDEAU, M, SORKIN, R. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 696
container_issue 2
container_start_page 687
container_title Physical review. D, Particles and fields
container_volume 45
creator BOURDEAU, M
SORKIN, R. D
description It is customary, when discussing configuration spaces of identical particles in two or more dimensions, to discard the configurations where two or more particles overlap, the justification being that the configuration space ceases to be a manifold at those points, and also to allow for nonbosonic statistics. We show that there is in general a loss of physical information in discarding these points by studying the simple system of two free particles moving in the plane and requiring that the Hamiltonian be self-adjoint. We find that the Hamiltonian for fermions is unique, but that in all other cases (i.e., for particles obeying properly fractional or Bose statistics) there is a one-parameter family of possible self-adjoint extensions. We show how a plausible limiting procedure selects a unique extension from each family, the favored extension being the one for which the wave function remains finite at the points of overlap. We also test our procedure by applying it to the known case of the hydrogen atom.
doi_str_mv 10.1103/PhysRevD.45.687
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7235511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859286920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-b51bfd557a0e2997efd23b1d9dfd6810ea306da5d01fece5a4c8174caacbf6423</originalsourceid><addsrcrecordid>eNpN0M9LwzAUwPEgips_zt6kiIiXbnlpkiYnkfkTBoooHkOavLJK186mE_bfG-kUc0l4fPIOX0JOgE4AaDZ9XmzCC37dTLiYSJXvkDFQpVOuQe2SMRVCpkwxGJGDED5oPExm-2QElALnjI3JxfsCm8TZJqk8Nn3lbJ2sbBcfNYbEtXUd58nVEdkrbR3weHsfkre729fZQzp_un-cXc9Tl-m8TwsBRemFyC1FpnWOpWdZAV770ksFFG1GpbfCUyjRobDcKci5s9YVpeQsOyRnw9429JUJrurRLVzbNOh6k7NMCICILge06trPNYbeLKvgsK5tg-06GFBCMyU1o5FOB-q6NoQOS7PqqqXtNgao-SlofgsaLkwsGH-cbpeviyX6f35IFsH5FtgQa5WdbVwV_pygKpeKZt862Xjq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859286920</pqid></control><display><type>article</type><title>When can identical particles collide ?</title><source>American Physical Society Journals</source><creator>BOURDEAU, M ; SORKIN, R. D</creator><creatorcontrib>BOURDEAU, M ; SORKIN, R. D</creatorcontrib><description>It is customary, when discussing configuration spaces of identical particles in two or more dimensions, to discard the configurations where two or more particles overlap, the justification being that the configuration space ceases to be a manifold at those points, and also to allow for nonbosonic statistics. We show that there is in general a loss of physical information in discarding these points by studying the simple system of two free particles moving in the plane and requiring that the Hamiltonian be self-adjoint. We find that the Hamiltonian for fermions is unique, but that in all other cases (i.e., for particles obeying properly fractional or Bose statistics) there is a one-parameter family of possible self-adjoint extensions. We show how a plausible limiting procedure selects a unique extension from each family, the favored extension being the one for which the wave function remains finite at the points of overlap. We also test our procedure by applying it to the known case of the hydrogen atom.</description><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.45.687</identifier><identifier>PMID: 10014422</identifier><identifier>CODEN: PRVDAQ</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>661100 - Classical &amp; Quantum Mechanics- (1992-) ; ATOMS ; BOSE-EINSTEIN STATISTICS ; BOUNDARY CONDITIONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical and quantum physics: mechanics and fields ; ELEMENTS ; Exact sciences and technology ; FERMIONS ; FUNCTIONS ; HAMILTONIANS ; HYDROGEN ; INTERACTIONS ; MANY-BODY PROBLEM ; MATHEMATICAL OPERATORS ; NONMETALS ; PARTICLE INTERACTIONS ; Physics ; QUANTUM OPERATORS ; Theory of quantized fields ; THREE-DIMENSIONAL CALCULATIONS ; TWO-BODY PROBLEM ; WAVE FUNCTIONS</subject><ispartof>Physical review. D, Particles and fields, 1992-01, Vol.45 (2), p.687-696</ispartof><rights>1992 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-b51bfd557a0e2997efd23b1d9dfd6810ea306da5d01fece5a4c8174caacbf6423</citedby><cites>FETCH-LOGICAL-c397t-b51bfd557a0e2997efd23b1d9dfd6810ea306da5d01fece5a4c8174caacbf6423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5087680$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10014422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7235511$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>BOURDEAU, M</creatorcontrib><creatorcontrib>SORKIN, R. D</creatorcontrib><title>When can identical particles collide ?</title><title>Physical review. D, Particles and fields</title><addtitle>Phys Rev D Part Fields</addtitle><description>It is customary, when discussing configuration spaces of identical particles in two or more dimensions, to discard the configurations where two or more particles overlap, the justification being that the configuration space ceases to be a manifold at those points, and also to allow for nonbosonic statistics. We show that there is in general a loss of physical information in discarding these points by studying the simple system of two free particles moving in the plane and requiring that the Hamiltonian be self-adjoint. We find that the Hamiltonian for fermions is unique, but that in all other cases (i.e., for particles obeying properly fractional or Bose statistics) there is a one-parameter family of possible self-adjoint extensions. We show how a plausible limiting procedure selects a unique extension from each family, the favored extension being the one for which the wave function remains finite at the points of overlap. We also test our procedure by applying it to the known case of the hydrogen atom.</description><subject>661100 - Classical &amp; Quantum Mechanics- (1992-)</subject><subject>ATOMS</subject><subject>BOSE-EINSTEIN STATISTICS</subject><subject>BOUNDARY CONDITIONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>ELEMENTS</subject><subject>Exact sciences and technology</subject><subject>FERMIONS</subject><subject>FUNCTIONS</subject><subject>HAMILTONIANS</subject><subject>HYDROGEN</subject><subject>INTERACTIONS</subject><subject>MANY-BODY PROBLEM</subject><subject>MATHEMATICAL OPERATORS</subject><subject>NONMETALS</subject><subject>PARTICLE INTERACTIONS</subject><subject>Physics</subject><subject>QUANTUM OPERATORS</subject><subject>Theory of quantized fields</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><subject>TWO-BODY PROBLEM</subject><subject>WAVE FUNCTIONS</subject><issn>0556-2821</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpN0M9LwzAUwPEgips_zt6kiIiXbnlpkiYnkfkTBoooHkOavLJK186mE_bfG-kUc0l4fPIOX0JOgE4AaDZ9XmzCC37dTLiYSJXvkDFQpVOuQe2SMRVCpkwxGJGDED5oPExm-2QElALnjI3JxfsCm8TZJqk8Nn3lbJ2sbBcfNYbEtXUd58nVEdkrbR3weHsfkre729fZQzp_un-cXc9Tl-m8TwsBRemFyC1FpnWOpWdZAV770ksFFG1GpbfCUyjRobDcKci5s9YVpeQsOyRnw9429JUJrurRLVzbNOh6k7NMCICILge06trPNYbeLKvgsK5tg-06GFBCMyU1o5FOB-q6NoQOS7PqqqXtNgao-SlofgsaLkwsGH-cbpeviyX6f35IFsH5FtgQa5WdbVwV_pygKpeKZt862Xjq</recordid><startdate>19920115</startdate><enddate>19920115</enddate><creator>BOURDEAU, M</creator><creator>SORKIN, R. D</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19920115</creationdate><title>When can identical particles collide ?</title><author>BOURDEAU, M ; SORKIN, R. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-b51bfd557a0e2997efd23b1d9dfd6810ea306da5d01fece5a4c8174caacbf6423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>661100 - Classical &amp; Quantum Mechanics- (1992-)</topic><topic>ATOMS</topic><topic>BOSE-EINSTEIN STATISTICS</topic><topic>BOUNDARY CONDITIONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>ELEMENTS</topic><topic>Exact sciences and technology</topic><topic>FERMIONS</topic><topic>FUNCTIONS</topic><topic>HAMILTONIANS</topic><topic>HYDROGEN</topic><topic>INTERACTIONS</topic><topic>MANY-BODY PROBLEM</topic><topic>MATHEMATICAL OPERATORS</topic><topic>NONMETALS</topic><topic>PARTICLE INTERACTIONS</topic><topic>Physics</topic><topic>QUANTUM OPERATORS</topic><topic>Theory of quantized fields</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><topic>TWO-BODY PROBLEM</topic><topic>WAVE FUNCTIONS</topic><toplevel>online_resources</toplevel><creatorcontrib>BOURDEAU, M</creatorcontrib><creatorcontrib>SORKIN, R. D</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOURDEAU, M</au><au>SORKIN, R. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>When can identical particles collide ?</atitle><jtitle>Physical review. D, Particles and fields</jtitle><addtitle>Phys Rev D Part Fields</addtitle><date>1992-01-15</date><risdate>1992</risdate><volume>45</volume><issue>2</issue><spage>687</spage><epage>696</epage><pages>687-696</pages><issn>0556-2821</issn><eissn>1089-4918</eissn><coden>PRVDAQ</coden><abstract>It is customary, when discussing configuration spaces of identical particles in two or more dimensions, to discard the configurations where two or more particles overlap, the justification being that the configuration space ceases to be a manifold at those points, and also to allow for nonbosonic statistics. We show that there is in general a loss of physical information in discarding these points by studying the simple system of two free particles moving in the plane and requiring that the Hamiltonian be self-adjoint. We find that the Hamiltonian for fermions is unique, but that in all other cases (i.e., for particles obeying properly fractional or Bose statistics) there is a one-parameter family of possible self-adjoint extensions. We show how a plausible limiting procedure selects a unique extension from each family, the favored extension being the one for which the wave function remains finite at the points of overlap. We also test our procedure by applying it to the known case of the hydrogen atom.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>10014422</pmid><doi>10.1103/PhysRevD.45.687</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0556-2821
ispartof Physical review. D, Particles and fields, 1992-01, Vol.45 (2), p.687-696
issn 0556-2821
1089-4918
language eng
recordid cdi_osti_scitechconnect_7235511
source American Physical Society Journals
subjects 661100 - Classical & Quantum Mechanics- (1992-)
ATOMS
BOSE-EINSTEIN STATISTICS
BOUNDARY CONDITIONS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Classical and quantum physics: mechanics and fields
ELEMENTS
Exact sciences and technology
FERMIONS
FUNCTIONS
HAMILTONIANS
HYDROGEN
INTERACTIONS
MANY-BODY PROBLEM
MATHEMATICAL OPERATORS
NONMETALS
PARTICLE INTERACTIONS
Physics
QUANTUM OPERATORS
Theory of quantized fields
THREE-DIMENSIONAL CALCULATIONS
TWO-BODY PROBLEM
WAVE FUNCTIONS
title When can identical particles collide ?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=When%20can%20identical%20particles%20collide%20?&rft.jtitle=Physical%20review.%20D,%20Particles%20and%20fields&rft.au=BOURDEAU,%20M&rft.date=1992-01-15&rft.volume=45&rft.issue=2&rft.spage=687&rft.epage=696&rft.pages=687-696&rft.issn=0556-2821&rft.eissn=1089-4918&rft.coden=PRVDAQ&rft_id=info:doi/10.1103/PhysRevD.45.687&rft_dat=%3Cproquest_osti_%3E1859286920%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859286920&rft_id=info:pmid/10014422&rfr_iscdi=true