Ceramic Thin-Film Formation on Functionalized Interfaces Through Biomimetic Processing

Processing routes have been developed for the production of thin ceramic films through precipitation from aqueous solutions. The techniques are based on crystal nucleation and growth onto functionalized interfaces. Surface functionalization routes have been developed by the mimicking of schemes used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1994-04, Vol.264 (5155), p.48-55
Hauptverfasser: Bunker, B. C., Rieke, P. C., Tarasevich, B. J., Campbell, A. A., Fryxell, G. E., Graff, G. L., Song, L., Liu, J., Virden, J. W., McVay, G. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 5155
container_start_page 48
container_title Science (American Association for the Advancement of Science)
container_volume 264
creator Bunker, B. C.
Rieke, P. C.
Tarasevich, B. J.
Campbell, A. A.
Fryxell, G. E.
Graff, G. L.
Song, L.
Liu, J.
Virden, J. W.
McVay, G. L.
description Processing routes have been developed for the production of thin ceramic films through precipitation from aqueous solutions. The techniques are based on crystal nucleation and growth onto functionalized interfaces. Surface functionalization routes have been developed by the mimicking of schemes used by organisms to produce complex ceramic composites such as teeth, bones, and shells. High-quality, dense polycrystalline films of oxides, hydroxides, and sulfides have now been prepared from "biomimetic" synthesis techniques. Ceramic films can be synthesized on plastics and other materials at temperatures below 100°C. As a low-temperature process in which water rather than organic solvents is used, this synthesis is environmentally benign. Nanocrystalline ceramics can be produced, sometimes with preferred crystallite orientation. The direct deposition of high-resolution patterned films has also been demonstrated. The process is well suited to the production of organic-inorganic composites.
doi_str_mv 10.1126/science.264.5155.48
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7166861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A15302784</galeid><jstor_id>2883820</jstor_id><sourcerecordid>A15302784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c718t-b8ddd34e190d42d8dd70e5f6f7ceef25017a3a848192dc65cf48f3f4359d7d533</originalsourceid><addsrcrecordid>eNqN00Fr2zAUB3AzNtau2yfYGGEMtkOdSZZlycc2LFkgLIN1vQpVenJUbKmVZNj26aeQ0BHIIdhg2e_3dHj6uyjeYjTFuGq-RGXBKZhWTT2lmNJpzZ8V5xi1tGwrRJ4X5wiRpuSI0bPiVYz3COVaS14WZ5gxxjEh58XtDIIcrJrcbKwr57YfJnMfBpmsd5N8z0entmvZ27-gJ0uXIBipIOaG4MduM7m2frADpLzHj-BzJVrXvS5eGNlHeLN_XhS_5l9vZt_K1XqxnF2tSsUwT-Ud11qTGnCLdF3p_MYQUNMYpgBMRRFmkkhec9xWWjVUmZobYmpCW800JeSi-LDb18dkRZ5IArVR3jlQSTDcNLzBGX3aoYfgH0eISQw2Kuh76cCPUTBCcNsSUmV5uZOd7EFYZ3wKUnXg8pB678DY_PkKU4IqxuvMyyM8XxrySI_5zwc-kwS_UyfHGMXy5_eT6fr2ZHq9OJXyxeqAXh6jyvc9dCDyKc7WB5zsuAo-xgBGPAQ7yPBHYCS2cRX7uIocV7GNq6h57nq_P5nxbgD9v2efzww-7oGMSvYmSKdsfHI1QrzCKLN3O3Yfkw9P5YpzwvOv8A9Y5_j2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733199332</pqid></control><display><type>article</type><title>Ceramic Thin-Film Formation on Functionalized Interfaces Through Biomimetic Processing</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Bunker, B. C. ; Rieke, P. C. ; Tarasevich, B. J. ; Campbell, A. A. ; Fryxell, G. E. ; Graff, G. L. ; Song, L. ; Liu, J. ; Virden, J. W. ; McVay, G. L.</creator><creatorcontrib>Bunker, B. C. ; Rieke, P. C. ; Tarasevich, B. J. ; Campbell, A. A. ; Fryxell, G. E. ; Graff, G. L. ; Song, L. ; Liu, J. ; Virden, J. W. ; McVay, G. L.</creatorcontrib><description>Processing routes have been developed for the production of thin ceramic films through precipitation from aqueous solutions. The techniques are based on crystal nucleation and growth onto functionalized interfaces. Surface functionalization routes have been developed by the mimicking of schemes used by organisms to produce complex ceramic composites such as teeth, bones, and shells. High-quality, dense polycrystalline films of oxides, hydroxides, and sulfides have now been prepared from "biomimetic" synthesis techniques. Ceramic films can be synthesized on plastics and other materials at temperatures below 100°C. As a low-temperature process in which water rather than organic solvents is used, this synthesis is environmentally benign. Nanocrystalline ceramics can be produced, sometimes with preferred crystallite orientation. The direct deposition of high-resolution patterned films has also been demonstrated. The process is well suited to the production of organic-inorganic composites.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.264.5155.48</identifier><identifier>PMID: 17778133</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>360201 - Ceramics, Cermets, &amp; Refractories- Preparation &amp; Fabrication ; Applied sciences ; Biomimetic materials ; BIOMIMETIC PROCESSES ; Biomimetics ; Building materials. Ceramics. Glasses ; Ceramic industries ; Ceramic materials ; CERAMICS ; Chemical industry and chemicals ; Coatings ; Crystals ; DEPOSITION ; Dielectric films ; ENVIRONMENTAL IMPACTS ; Exact sciences and technology ; Functional groups ; Material films ; MATERIALS SCIENCE ; Miscellaneous ; Nucleation ; PRODUCTION ; Solubility ; Supersaturation ; Technical ceramics ; THIN FILMS ; Tin oxides</subject><ispartof>Science (American Association for the Advancement of Science), 1994-04, Vol.264 (5155), p.48-55</ispartof><rights>Copyright 1994 American Association for the Advancement of Science</rights><rights>1994 INIST-CNRS</rights><rights>COPYRIGHT 1994 American Association for the Advancement of Science</rights><rights>COPYRIGHT 1994 American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c718t-b8ddd34e190d42d8dd70e5f6f7ceef25017a3a848192dc65cf48f3f4359d7d533</citedby><cites>FETCH-LOGICAL-c718t-b8ddd34e190d42d8dd70e5f6f7ceef25017a3a848192dc65cf48f3f4359d7d533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2883820$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2883820$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4008210$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17778133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7166861$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bunker, B. C.</creatorcontrib><creatorcontrib>Rieke, P. C.</creatorcontrib><creatorcontrib>Tarasevich, B. J.</creatorcontrib><creatorcontrib>Campbell, A. A.</creatorcontrib><creatorcontrib>Fryxell, G. E.</creatorcontrib><creatorcontrib>Graff, G. L.</creatorcontrib><creatorcontrib>Song, L.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Virden, J. W.</creatorcontrib><creatorcontrib>McVay, G. L.</creatorcontrib><title>Ceramic Thin-Film Formation on Functionalized Interfaces Through Biomimetic Processing</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Processing routes have been developed for the production of thin ceramic films through precipitation from aqueous solutions. The techniques are based on crystal nucleation and growth onto functionalized interfaces. Surface functionalization routes have been developed by the mimicking of schemes used by organisms to produce complex ceramic composites such as teeth, bones, and shells. High-quality, dense polycrystalline films of oxides, hydroxides, and sulfides have now been prepared from "biomimetic" synthesis techniques. Ceramic films can be synthesized on plastics and other materials at temperatures below 100°C. As a low-temperature process in which water rather than organic solvents is used, this synthesis is environmentally benign. Nanocrystalline ceramics can be produced, sometimes with preferred crystallite orientation. The direct deposition of high-resolution patterned films has also been demonstrated. The process is well suited to the production of organic-inorganic composites.</description><subject>360201 - Ceramics, Cermets, &amp; Refractories- Preparation &amp; Fabrication</subject><subject>Applied sciences</subject><subject>Biomimetic materials</subject><subject>BIOMIMETIC PROCESSES</subject><subject>Biomimetics</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>Ceramic materials</subject><subject>CERAMICS</subject><subject>Chemical industry and chemicals</subject><subject>Coatings</subject><subject>Crystals</subject><subject>DEPOSITION</subject><subject>Dielectric films</subject><subject>ENVIRONMENTAL IMPACTS</subject><subject>Exact sciences and technology</subject><subject>Functional groups</subject><subject>Material films</subject><subject>MATERIALS SCIENCE</subject><subject>Miscellaneous</subject><subject>Nucleation</subject><subject>PRODUCTION</subject><subject>Solubility</subject><subject>Supersaturation</subject><subject>Technical ceramics</subject><subject>THIN FILMS</subject><subject>Tin oxides</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqN00Fr2zAUB3AzNtau2yfYGGEMtkOdSZZlycc2LFkgLIN1vQpVenJUbKmVZNj26aeQ0BHIIdhg2e_3dHj6uyjeYjTFuGq-RGXBKZhWTT2lmNJpzZ8V5xi1tGwrRJ4X5wiRpuSI0bPiVYz3COVaS14WZ5gxxjEh58XtDIIcrJrcbKwr57YfJnMfBpmsd5N8z0entmvZ27-gJ0uXIBipIOaG4MduM7m2frADpLzHj-BzJVrXvS5eGNlHeLN_XhS_5l9vZt_K1XqxnF2tSsUwT-Ud11qTGnCLdF3p_MYQUNMYpgBMRRFmkkhec9xWWjVUmZobYmpCW800JeSi-LDb18dkRZ5IArVR3jlQSTDcNLzBGX3aoYfgH0eISQw2Kuh76cCPUTBCcNsSUmV5uZOd7EFYZ3wKUnXg8pB678DY_PkKU4IqxuvMyyM8XxrySI_5zwc-kwS_UyfHGMXy5_eT6fr2ZHq9OJXyxeqAXh6jyvc9dCDyKc7WB5zsuAo-xgBGPAQ7yPBHYCS2cRX7uIocV7GNq6h57nq_P5nxbgD9v2efzww-7oGMSvYmSKdsfHI1QrzCKLN3O3Yfkw9P5YpzwvOv8A9Y5_j2</recordid><startdate>19940401</startdate><enddate>19940401</enddate><creator>Bunker, B. C.</creator><creator>Rieke, P. C.</creator><creator>Tarasevich, B. J.</creator><creator>Campbell, A. A.</creator><creator>Fryxell, G. E.</creator><creator>Graff, G. L.</creator><creator>Song, L.</creator><creator>Liu, J.</creator><creator>Virden, J. W.</creator><creator>McVay, G. L.</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19940401</creationdate><title>Ceramic Thin-Film Formation on Functionalized Interfaces Through Biomimetic Processing</title><author>Bunker, B. C. ; Rieke, P. C. ; Tarasevich, B. J. ; Campbell, A. A. ; Fryxell, G. E. ; Graff, G. L. ; Song, L. ; Liu, J. ; Virden, J. W. ; McVay, G. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c718t-b8ddd34e190d42d8dd70e5f6f7ceef25017a3a848192dc65cf48f3f4359d7d533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>360201 - Ceramics, Cermets, &amp; Refractories- Preparation &amp; Fabrication</topic><topic>Applied sciences</topic><topic>Biomimetic materials</topic><topic>BIOMIMETIC PROCESSES</topic><topic>Biomimetics</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>Ceramic materials</topic><topic>CERAMICS</topic><topic>Chemical industry and chemicals</topic><topic>Coatings</topic><topic>Crystals</topic><topic>DEPOSITION</topic><topic>Dielectric films</topic><topic>ENVIRONMENTAL IMPACTS</topic><topic>Exact sciences and technology</topic><topic>Functional groups</topic><topic>Material films</topic><topic>MATERIALS SCIENCE</topic><topic>Miscellaneous</topic><topic>Nucleation</topic><topic>PRODUCTION</topic><topic>Solubility</topic><topic>Supersaturation</topic><topic>Technical ceramics</topic><topic>THIN FILMS</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bunker, B. C.</creatorcontrib><creatorcontrib>Rieke, P. C.</creatorcontrib><creatorcontrib>Tarasevich, B. J.</creatorcontrib><creatorcontrib>Campbell, A. A.</creatorcontrib><creatorcontrib>Fryxell, G. E.</creatorcontrib><creatorcontrib>Graff, G. L.</creatorcontrib><creatorcontrib>Song, L.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Virden, J. W.</creatorcontrib><creatorcontrib>McVay, G. L.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bunker, B. C.</au><au>Rieke, P. C.</au><au>Tarasevich, B. J.</au><au>Campbell, A. A.</au><au>Fryxell, G. E.</au><au>Graff, G. L.</au><au>Song, L.</au><au>Liu, J.</au><au>Virden, J. W.</au><au>McVay, G. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ceramic Thin-Film Formation on Functionalized Interfaces Through Biomimetic Processing</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1994-04-01</date><risdate>1994</risdate><volume>264</volume><issue>5155</issue><spage>48</spage><epage>55</epage><pages>48-55</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Processing routes have been developed for the production of thin ceramic films through precipitation from aqueous solutions. The techniques are based on crystal nucleation and growth onto functionalized interfaces. Surface functionalization routes have been developed by the mimicking of schemes used by organisms to produce complex ceramic composites such as teeth, bones, and shells. High-quality, dense polycrystalline films of oxides, hydroxides, and sulfides have now been prepared from "biomimetic" synthesis techniques. Ceramic films can be synthesized on plastics and other materials at temperatures below 100°C. As a low-temperature process in which water rather than organic solvents is used, this synthesis is environmentally benign. Nanocrystalline ceramics can be produced, sometimes with preferred crystallite orientation. The direct deposition of high-resolution patterned films has also been demonstrated. The process is well suited to the production of organic-inorganic composites.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>17778133</pmid><doi>10.1126/science.264.5155.48</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1994-04, Vol.264 (5155), p.48-55
issn 0036-8075
1095-9203
language eng
recordid cdi_osti_scitechconnect_7166861
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects 360201 - Ceramics, Cermets, & Refractories- Preparation & Fabrication
Applied sciences
Biomimetic materials
BIOMIMETIC PROCESSES
Biomimetics
Building materials. Ceramics. Glasses
Ceramic industries
Ceramic materials
CERAMICS
Chemical industry and chemicals
Coatings
Crystals
DEPOSITION
Dielectric films
ENVIRONMENTAL IMPACTS
Exact sciences and technology
Functional groups
Material films
MATERIALS SCIENCE
Miscellaneous
Nucleation
PRODUCTION
Solubility
Supersaturation
Technical ceramics
THIN FILMS
Tin oxides
title Ceramic Thin-Film Formation on Functionalized Interfaces Through Biomimetic Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ceramic%20Thin-Film%20Formation%20on%20Functionalized%20Interfaces%20Through%20Biomimetic%20Processing&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Bunker,%20B.%20C.&rft.date=1994-04-01&rft.volume=264&rft.issue=5155&rft.spage=48&rft.epage=55&rft.pages=48-55&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.264.5155.48&rft_dat=%3Cgale_osti_%3EA15302784%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733199332&rft_id=info:pmid/17778133&rft_galeid=A15302784&rft_jstor_id=2883820&rfr_iscdi=true