Failure analysis of beta-C titanium alloy high-pressure vessels

An attempt has been made to apply the linear elastic fracture mechanics concept to Beta-C titanium alloy pressure vessels that exhibited brittle fractures during hydrotesting. Based on the results of stress analysis on the real structures and fracture surface examinations, a stress-intensity factor,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials engineering and performance 1994-02, Vol.3 (1), p.105-109
Hauptverfasser: Feng, G. J., Rossi, J. D., Gerusky, M. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109
container_issue 1
container_start_page 105
container_title Journal of materials engineering and performance
container_volume 3
creator Feng, G. J.
Rossi, J. D.
Gerusky, M. T.
description An attempt has been made to apply the linear elastic fracture mechanics concept to Beta-C titanium alloy pressure vessels that exhibited brittle fractures during hydrotesting. Based on the results of stress analysis on the real structures and fracture surface examinations, a stress-intensity factor, K[sub IC], was estimated. The K[sub IC] value of the material in the cracking direction was measured by a surface semi-elliptical crack method. It was found that the K[sub IC] value of the material is very close to the estimated stress-intensity factor K[sub I] during failure, which places the pressure vessels in a critical condition in that a small variation in flaw size may cause a catastrophic failure. A compromise must be made between K[sub IC] and the required yield strength. In this restricted case, the yield strength of the material should be controlled in the range of 1,150 to 1,200 MPa to avoid brittle fracture and the possible occurrence of yield during hydrotesting. Control of microstructure and other mechanical properties is also discussed in this investigation.
doi_str_mv 10.1007/BF02654505
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7164435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22541555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-3fb1ffafeb881764f70deb8b4c5278d22494bc45a04f30584eae07c99712138c3</originalsourceid><addsrcrecordid>eNpFkEFLAzEUhIMoWKsXf8HiUYi-JC_N7km0WBUKXvQcsmliU7a7NckK_fdGKvQ0c_gYZoaQawZ3DEDdPy2AzyRKkCdkwiQiZcDxtHiQDW2wkefkIqUNFJhznJCHhQndGF1letPtU0jV4KvWZUPnVQ7Z9GHcVqbrhn21Dl9ruosupT_-p6jr0iU586ZL7upfp-Rz8fwxf6XL95e3-eOSWo48U-Fb5r3xrq1rpmboFayKb9FKrupVqdJga1EaQC9A1uiMA2WbRjHORG3FlNwccoeUg042ZGfXduh7Z7NWbIYo5BHaxeF7dCnrzTDGMixpzrkAEEwV6PYA2TikFJ3Xuxi2Ju41A_13oj6eKH4Bx5FiOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222300317</pqid></control><display><type>article</type><title>Failure analysis of beta-C titanium alloy high-pressure vessels</title><source>SpringerLink Journals - AutoHoldings</source><creator>Feng, G. J. ; Rossi, J. D. ; Gerusky, M. T.</creator><creatorcontrib>Feng, G. J. ; Rossi, J. D. ; Gerusky, M. T.</creatorcontrib><description>An attempt has been made to apply the linear elastic fracture mechanics concept to Beta-C titanium alloy pressure vessels that exhibited brittle fractures during hydrotesting. Based on the results of stress analysis on the real structures and fracture surface examinations, a stress-intensity factor, K[sub IC], was estimated. The K[sub IC] value of the material in the cracking direction was measured by a surface semi-elliptical crack method. It was found that the K[sub IC] value of the material is very close to the estimated stress-intensity factor K[sub I] during failure, which places the pressure vessels in a critical condition in that a small variation in flaw size may cause a catastrophic failure. A compromise must be made between K[sub IC] and the required yield strength. In this restricted case, the yield strength of the material should be controlled in the range of 1,150 to 1,200 MPa to avoid brittle fracture and the possible occurrence of yield during hydrotesting. Control of microstructure and other mechanical properties is also discussed in this investigation.</description><identifier>ISSN: 1059-9495</identifier><identifier>EISSN: 1544-1024</identifier><identifier>DOI: 10.1007/BF02654505</identifier><identifier>CODEN: JMEPEG</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>360102 - Metals &amp; Alloys- Structure &amp; Phase Studies ; 360103 - Metals &amp; Alloys- Mechanical Properties ; 420200 - Engineering- Facilities, Equipment, &amp; Techniques ; ALLOYS ; ALUMINIUM ALLOYS ; CHROMIUM ALLOYS ; CONTAINERS ; ELEMENTS ; ENGINEERING ; FAILURE MODE ANALYSIS ; FAILURES ; MATERIALS SCIENCE ; MATERIALS TESTING ; MECHANICAL TESTS ; METALS ; MICROSTRUCTURE ; MOLYBDENUM ALLOYS ; PRESSURE VESSELS ; STRESS ANALYSIS ; SYSTEM FAILURE ANALYSIS ; SYSTEMS ANALYSIS ; TESTING ; TITANIUM ; TITANIUM ALLOYS ; TITANIUM BASE ALLOYS ; TITANIUM-BETA ; TRANSITION ELEMENTS ; VANADIUM ALLOYS ; ZIRCONIUM ALLOYS</subject><ispartof>Journal of materials engineering and performance, 1994-02, Vol.3 (1), p.105-109</ispartof><rights>Copyright ASM International Feb 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/7164435$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, G. J.</creatorcontrib><creatorcontrib>Rossi, J. D.</creatorcontrib><creatorcontrib>Gerusky, M. T.</creatorcontrib><title>Failure analysis of beta-C titanium alloy high-pressure vessels</title><title>Journal of materials engineering and performance</title><description>An attempt has been made to apply the linear elastic fracture mechanics concept to Beta-C titanium alloy pressure vessels that exhibited brittle fractures during hydrotesting. Based on the results of stress analysis on the real structures and fracture surface examinations, a stress-intensity factor, K[sub IC], was estimated. The K[sub IC] value of the material in the cracking direction was measured by a surface semi-elliptical crack method. It was found that the K[sub IC] value of the material is very close to the estimated stress-intensity factor K[sub I] during failure, which places the pressure vessels in a critical condition in that a small variation in flaw size may cause a catastrophic failure. A compromise must be made between K[sub IC] and the required yield strength. In this restricted case, the yield strength of the material should be controlled in the range of 1,150 to 1,200 MPa to avoid brittle fracture and the possible occurrence of yield during hydrotesting. Control of microstructure and other mechanical properties is also discussed in this investigation.</description><subject>360102 - Metals &amp; Alloys- Structure &amp; Phase Studies</subject><subject>360103 - Metals &amp; Alloys- Mechanical Properties</subject><subject>420200 - Engineering- Facilities, Equipment, &amp; Techniques</subject><subject>ALLOYS</subject><subject>ALUMINIUM ALLOYS</subject><subject>CHROMIUM ALLOYS</subject><subject>CONTAINERS</subject><subject>ELEMENTS</subject><subject>ENGINEERING</subject><subject>FAILURE MODE ANALYSIS</subject><subject>FAILURES</subject><subject>MATERIALS SCIENCE</subject><subject>MATERIALS TESTING</subject><subject>MECHANICAL TESTS</subject><subject>METALS</subject><subject>MICROSTRUCTURE</subject><subject>MOLYBDENUM ALLOYS</subject><subject>PRESSURE VESSELS</subject><subject>STRESS ANALYSIS</subject><subject>SYSTEM FAILURE ANALYSIS</subject><subject>SYSTEMS ANALYSIS</subject><subject>TESTING</subject><subject>TITANIUM</subject><subject>TITANIUM ALLOYS</subject><subject>TITANIUM BASE ALLOYS</subject><subject>TITANIUM-BETA</subject><subject>TRANSITION ELEMENTS</subject><subject>VANADIUM ALLOYS</subject><subject>ZIRCONIUM ALLOYS</subject><issn>1059-9495</issn><issn>1544-1024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkEFLAzEUhIMoWKsXf8HiUYi-JC_N7km0WBUKXvQcsmliU7a7NckK_fdGKvQ0c_gYZoaQawZ3DEDdPy2AzyRKkCdkwiQiZcDxtHiQDW2wkefkIqUNFJhznJCHhQndGF1letPtU0jV4KvWZUPnVQ7Z9GHcVqbrhn21Dl9ruosupT_-p6jr0iU586ZL7upfp-Rz8fwxf6XL95e3-eOSWo48U-Fb5r3xrq1rpmboFayKb9FKrupVqdJga1EaQC9A1uiMA2WbRjHORG3FlNwccoeUg042ZGfXduh7Z7NWbIYo5BHaxeF7dCnrzTDGMixpzrkAEEwV6PYA2TikFJ3Xuxi2Ju41A_13oj6eKH4Bx5FiOQ</recordid><startdate>199402</startdate><enddate>199402</enddate><creator>Feng, G. J.</creator><creator>Rossi, J. D.</creator><creator>Gerusky, M. T.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>OTOTI</scope></search><sort><creationdate>199402</creationdate><title>Failure analysis of beta-C titanium alloy high-pressure vessels</title><author>Feng, G. J. ; Rossi, J. D. ; Gerusky, M. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-3fb1ffafeb881764f70deb8b4c5278d22494bc45a04f30584eae07c99712138c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>360102 - Metals &amp; Alloys- Structure &amp; Phase Studies</topic><topic>360103 - Metals &amp; Alloys- Mechanical Properties</topic><topic>420200 - Engineering- Facilities, Equipment, &amp; Techniques</topic><topic>ALLOYS</topic><topic>ALUMINIUM ALLOYS</topic><topic>CHROMIUM ALLOYS</topic><topic>CONTAINERS</topic><topic>ELEMENTS</topic><topic>ENGINEERING</topic><topic>FAILURE MODE ANALYSIS</topic><topic>FAILURES</topic><topic>MATERIALS SCIENCE</topic><topic>MATERIALS TESTING</topic><topic>MECHANICAL TESTS</topic><topic>METALS</topic><topic>MICROSTRUCTURE</topic><topic>MOLYBDENUM ALLOYS</topic><topic>PRESSURE VESSELS</topic><topic>STRESS ANALYSIS</topic><topic>SYSTEM FAILURE ANALYSIS</topic><topic>SYSTEMS ANALYSIS</topic><topic>TESTING</topic><topic>TITANIUM</topic><topic>TITANIUM ALLOYS</topic><topic>TITANIUM BASE ALLOYS</topic><topic>TITANIUM-BETA</topic><topic>TRANSITION ELEMENTS</topic><topic>VANADIUM ALLOYS</topic><topic>ZIRCONIUM ALLOYS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, G. J.</creatorcontrib><creatorcontrib>Rossi, J. D.</creatorcontrib><creatorcontrib>Gerusky, M. T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials engineering and performance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, G. J.</au><au>Rossi, J. D.</au><au>Gerusky, M. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Failure analysis of beta-C titanium alloy high-pressure vessels</atitle><jtitle>Journal of materials engineering and performance</jtitle><date>1994-02</date><risdate>1994</risdate><volume>3</volume><issue>1</issue><spage>105</spage><epage>109</epage><pages>105-109</pages><issn>1059-9495</issn><eissn>1544-1024</eissn><coden>JMEPEG</coden><abstract>An attempt has been made to apply the linear elastic fracture mechanics concept to Beta-C titanium alloy pressure vessels that exhibited brittle fractures during hydrotesting. Based on the results of stress analysis on the real structures and fracture surface examinations, a stress-intensity factor, K[sub IC], was estimated. The K[sub IC] value of the material in the cracking direction was measured by a surface semi-elliptical crack method. It was found that the K[sub IC] value of the material is very close to the estimated stress-intensity factor K[sub I] during failure, which places the pressure vessels in a critical condition in that a small variation in flaw size may cause a catastrophic failure. A compromise must be made between K[sub IC] and the required yield strength. In this restricted case, the yield strength of the material should be controlled in the range of 1,150 to 1,200 MPa to avoid brittle fracture and the possible occurrence of yield during hydrotesting. Control of microstructure and other mechanical properties is also discussed in this investigation.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02654505</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1059-9495
ispartof Journal of materials engineering and performance, 1994-02, Vol.3 (1), p.105-109
issn 1059-9495
1544-1024
language eng
recordid cdi_osti_scitechconnect_7164435
source SpringerLink Journals - AutoHoldings
subjects 360102 - Metals & Alloys- Structure & Phase Studies
360103 - Metals & Alloys- Mechanical Properties
420200 - Engineering- Facilities, Equipment, & Techniques
ALLOYS
ALUMINIUM ALLOYS
CHROMIUM ALLOYS
CONTAINERS
ELEMENTS
ENGINEERING
FAILURE MODE ANALYSIS
FAILURES
MATERIALS SCIENCE
MATERIALS TESTING
MECHANICAL TESTS
METALS
MICROSTRUCTURE
MOLYBDENUM ALLOYS
PRESSURE VESSELS
STRESS ANALYSIS
SYSTEM FAILURE ANALYSIS
SYSTEMS ANALYSIS
TESTING
TITANIUM
TITANIUM ALLOYS
TITANIUM BASE ALLOYS
TITANIUM-BETA
TRANSITION ELEMENTS
VANADIUM ALLOYS
ZIRCONIUM ALLOYS
title Failure analysis of beta-C titanium alloy high-pressure vessels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Failure%20analysis%20of%20beta-C%20titanium%20alloy%20high-pressure%20vessels&rft.jtitle=Journal%20of%20materials%20engineering%20and%20performance&rft.au=Feng,%20G.%20J.&rft.date=1994-02&rft.volume=3&rft.issue=1&rft.spage=105&rft.epage=109&rft.pages=105-109&rft.issn=1059-9495&rft.eissn=1544-1024&rft.coden=JMEPEG&rft_id=info:doi/10.1007/BF02654505&rft_dat=%3Cproquest_osti_%3E22541555%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222300317&rft_id=info:pmid/&rfr_iscdi=true