Efficient, reliable computation of resonances of the one-dimensional Schroedinger equation

We present a numerical method, implemented in a Fortran code RESON, for computing resonance of the radial one-dimensional Schroedinger equation, for an underlying potential that decays sufficiently fast at infinity. The basic approach is to maximize the time-delay function [tau]([lambda]) as in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 1994-06, Vol.112:2
1. Verfasser: Pryce, J.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of computational physics
container_volume 112:2
creator Pryce, J.D.
description We present a numerical method, implemented in a Fortran code RESON, for computing resonance of the radial one-dimensional Schroedinger equation, for an underlying potential that decays sufficiently fast at infinity. The basic approach is to maximize the time-delay function [tau]([lambda]) as in the LeRoy program TDELAY. We present some theory that allows a preliminary bracketing of the resonance and various ways of reducing the total work. Together with automatic meshsize selection this leads to a method that has proved efficient, robust, and extremely trouble-free in numerical tests. The code makes use of Marletta's Sturm-Liouville solver, SLO2F, due to go into the NAG library. 24 refs., 4 figs., 3 tabs.
doi_str_mv 10.1006/jcph.1994.1095
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_7158792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>7158792</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_71587923</originalsourceid><addsrcrecordid>eNqNi80OwUAURidCon621hNrrTul2lkLsWdlI-O61ZG6Q2e8vxIPYHVyvpxPiImCRAGs5jd8VInSetmqzjoiagFxmqtVV0QAqYq11qovBt7fAKDIlkUkjpuytGiJw0w2VFtzrkmiuz9ewQTrWLqy3b1jw0j-Y6Ei6Zjii70T-zYxtdxj1Ti6WL5SI-n5-l5Holea2tP4x6GYbjeH9S52PtiTRxsIK3TMhOGUq6zIdbr4K3oD1dxJ8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient, reliable computation of resonances of the one-dimensional Schroedinger equation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pryce, J.D.</creator><creatorcontrib>Pryce, J.D.</creatorcontrib><description>We present a numerical method, implemented in a Fortran code RESON, for computing resonance of the radial one-dimensional Schroedinger equation, for an underlying potential that decays sufficiently fast at infinity. The basic approach is to maximize the time-delay function [tau]([lambda]) as in the LeRoy program TDELAY. We present some theory that allows a preliminary bracketing of the resonance and various ways of reducing the total work. Together with automatic meshsize selection this leads to a method that has proved efficient, robust, and extremely trouble-free in numerical tests. The code makes use of Marletta's Sturm-Liouville solver, SLO2F, due to go into the NAG library. 24 refs., 4 figs., 3 tabs.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1006/jcph.1994.1095</identifier><language>eng</language><publisher>United States</publisher><subject>990200 -- Mathematics &amp; Computers ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPUTERIZED SIMULATION ; DIFFERENTIAL EQUATIONS ; EQUATIONS ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; INELASTIC SCATTERING ; NUMERICAL SOLUTION ; PARTIAL DIFFERENTIAL EQUATIONS ; SCATTERING ; SCHROEDINGER EQUATION ; SIMULATION ; WAVE EQUATIONS 661100 -- Classical &amp; Quantum Mechanics-- (1992-)</subject><ispartof>Journal of computational physics, 1994-06, Vol.112:2</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/7158792$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pryce, J.D.</creatorcontrib><title>Efficient, reliable computation of resonances of the one-dimensional Schroedinger equation</title><title>Journal of computational physics</title><description>We present a numerical method, implemented in a Fortran code RESON, for computing resonance of the radial one-dimensional Schroedinger equation, for an underlying potential that decays sufficiently fast at infinity. The basic approach is to maximize the time-delay function [tau]([lambda]) as in the LeRoy program TDELAY. We present some theory that allows a preliminary bracketing of the resonance and various ways of reducing the total work. Together with automatic meshsize selection this leads to a method that has proved efficient, robust, and extremely trouble-free in numerical tests. The code makes use of Marletta's Sturm-Liouville solver, SLO2F, due to go into the NAG library. 24 refs., 4 figs., 3 tabs.</description><subject>990200 -- Mathematics &amp; Computers</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EQUATIONS</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>INELASTIC SCATTERING</subject><subject>NUMERICAL SOLUTION</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>SCATTERING</subject><subject>SCHROEDINGER EQUATION</subject><subject>SIMULATION</subject><subject>WAVE EQUATIONS 661100 -- Classical &amp; Quantum Mechanics-- (1992-)</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqNi80OwUAURidCon621hNrrTul2lkLsWdlI-O61ZG6Q2e8vxIPYHVyvpxPiImCRAGs5jd8VInSetmqzjoiagFxmqtVV0QAqYq11qovBt7fAKDIlkUkjpuytGiJw0w2VFtzrkmiuz9ewQTrWLqy3b1jw0j-Y6Ei6Zjii70T-zYxtdxj1Ti6WL5SI-n5-l5Holea2tP4x6GYbjeH9S52PtiTRxsIK3TMhOGUq6zIdbr4K3oD1dxJ8g</recordid><startdate>19940601</startdate><enddate>19940601</enddate><creator>Pryce, J.D.</creator><scope>OTOTI</scope></search><sort><creationdate>19940601</creationdate><title>Efficient, reliable computation of resonances of the one-dimensional Schroedinger equation</title><author>Pryce, J.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_71587923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>990200 -- Mathematics &amp; Computers</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EQUATIONS</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>INELASTIC SCATTERING</topic><topic>NUMERICAL SOLUTION</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>SCATTERING</topic><topic>SCHROEDINGER EQUATION</topic><topic>SIMULATION</topic><topic>WAVE EQUATIONS 661100 -- Classical &amp; Quantum Mechanics-- (1992-)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pryce, J.D.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pryce, J.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient, reliable computation of resonances of the one-dimensional Schroedinger equation</atitle><jtitle>Journal of computational physics</jtitle><date>1994-06-01</date><risdate>1994</risdate><volume>112:2</volume><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We present a numerical method, implemented in a Fortran code RESON, for computing resonance of the radial one-dimensional Schroedinger equation, for an underlying potential that decays sufficiently fast at infinity. The basic approach is to maximize the time-delay function [tau]([lambda]) as in the LeRoy program TDELAY. We present some theory that allows a preliminary bracketing of the resonance and various ways of reducing the total work. Together with automatic meshsize selection this leads to a method that has proved efficient, robust, and extremely trouble-free in numerical tests. The code makes use of Marletta's Sturm-Liouville solver, SLO2F, due to go into the NAG library. 24 refs., 4 figs., 3 tabs.</abstract><cop>United States</cop><doi>10.1006/jcph.1994.1095</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 1994-06, Vol.112:2
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_7158792
source Elsevier ScienceDirect Journals Complete
subjects 990200 -- Mathematics & Computers
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COMPUTERIZED SIMULATION
DIFFERENTIAL EQUATIONS
EQUATIONS
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
INELASTIC SCATTERING
NUMERICAL SOLUTION
PARTIAL DIFFERENTIAL EQUATIONS
SCATTERING
SCHROEDINGER EQUATION
SIMULATION
WAVE EQUATIONS 661100 -- Classical & Quantum Mechanics-- (1992-)
title Efficient, reliable computation of resonances of the one-dimensional Schroedinger equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient,%20reliable%20computation%20of%20resonances%20of%20the%20one-dimensional%20Schroedinger%20equation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Pryce,%20J.D.&rft.date=1994-06-01&rft.volume=112:2&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1006/jcph.1994.1095&rft_dat=%3Costi%3E7158792%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true