Fabrication of Continuous-Fiber-Reinforced Polycrystalline Oxide Composites via Molten Salt Infiltration

A novel molten nitrate salt infiltration technique was developed for the fabrication of continuous‐fiber‐reinforced polycrystalline‐alumina‐matrix composites containing a high volume fraction (47%) of small‐diameter fibers (Du Pont PRD 166 alumina/zirconia; 20‐μm diameter). A single infiltration res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 1994-05, Vol.77 (5), p.1361-1365
Hauptverfasser: Chou, Yeong-Shyung, Ramberg, C. Eric, Hellmann, John R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1365
container_issue 5
container_start_page 1361
container_title Journal of the American Ceramic Society
container_volume 77
creator Chou, Yeong-Shyung
Ramberg, C. Eric
Hellmann, John R.
description A novel molten nitrate salt infiltration technique was developed for the fabrication of continuous‐fiber‐reinforced polycrystalline‐alumina‐matrix composites containing a high volume fraction (47%) of small‐diameter fibers (Du Pont PRD 166 alumina/zirconia; 20‐μm diameter). A single infiltration resulted in sufficient matrix yield to permit densification of the resulting composites to >93% of theoretical density with excellent microstructural uniformity. Hot‐pressed composites fabricated in this manner exhibited Young's modulus of 270GPa, flexural strengths of 272 ± 20 MPa, and fracture toughness of 3.35 ± 0.37 MPa·ml/2. Primary fracture origins were localized regions of interfiber porosity, which were attributed to incomplete fiber tow infiltration. Fractographic analysis revealed lack of fiber pullout, and emphasized the need for interfacial debonding agents (coatings) to achieve further toughening. Results have demonstrated the utility of molten‐salt‐matrix precursors for the fabrication of polycrystalline‐matrix composites containing high volume fractions of continuous, small‐diameter ceramic fibers.
doi_str_mv 10.1111/j.1151-2916.1994.tb05416.x
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7114725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26369299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3861-2fbe164002b90e652e1ed4a58277038d2846666ca016d7c3b3ed24d37da30feb3</originalsourceid><addsrcrecordid>eNqVkU1vEzEQhi0EEqHwH1YV4rbBH7v2mhNV2pR-UVRAHC2vd1Z1cOxgO5D8exw26p25jEbzzDtjvwidEjwnJd6vSmpJTSXhcyJlM889bptS7J6hGWmPredohjGmtegofolepbQqJZFdM0OPS91Ha3S2wVdhrBbBZ-u3YZvqpe0h1g9g_RiigaH6EtzexH3K2jnrobrf2QHKxHoTks2Qqt9WV3fBZfDVV-1ydeVH63L8J_4avRi1S_DmmE_Q9-XFt8Wn-vb-8mpxdlsb1vFy7tgD4U25tpcYeEuBwNDotqNCYNYNtGt4CaMx4YMwrGcw0GZgYtAMj9CzE3Q66YaUrUqmHGYeTfAeTFaCkEbQtkDvJmgTw68tpKzWNhlwTnsoT1eUMy6plAX8MIEmhpQijGoT7VrHvSJYHRxQK3VwQB2-WR0cUEcH1K4Mvz1u0cloN0btjU1PCg2WQlBcsI8T9sc62P_HAnV9trggjJMiUU8SNmXYPUno-FNxwUSrfny-VOTm7qal1-fqgf0FwvyrAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26369299</pqid></control><display><type>article</type><title>Fabrication of Continuous-Fiber-Reinforced Polycrystalline Oxide Composites via Molten Salt Infiltration</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chou, Yeong-Shyung ; Ramberg, C. Eric ; Hellmann, John R.</creator><creatorcontrib>Chou, Yeong-Shyung ; Ramberg, C. Eric ; Hellmann, John R.</creatorcontrib><description>A novel molten nitrate salt infiltration technique was developed for the fabrication of continuous‐fiber‐reinforced polycrystalline‐alumina‐matrix composites containing a high volume fraction (47%) of small‐diameter fibers (Du Pont PRD 166 alumina/zirconia; 20‐μm diameter). A single infiltration resulted in sufficient matrix yield to permit densification of the resulting composites to &gt;93% of theoretical density with excellent microstructural uniformity. Hot‐pressed composites fabricated in this manner exhibited Young's modulus of 270GPa, flexural strengths of 272 ± 20 MPa, and fracture toughness of 3.35 ± 0.37 MPa·ml/2. Primary fracture origins were localized regions of interfiber porosity, which were attributed to incomplete fiber tow infiltration. Fractographic analysis revealed lack of fiber pullout, and emphasized the need for interfacial debonding agents (coatings) to achieve further toughening. Results have demonstrated the utility of molten‐salt‐matrix precursors for the fabrication of polycrystalline‐matrix composites containing high volume fractions of continuous, small‐diameter ceramic fibers.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1994.tb05416.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>360601 - Other Materials- Preparation &amp; Manufacture ; 360603 - Materials- Properties ; ALUMINIUM COMPOUNDS ; ALUMINIUM OXIDES ; Applied sciences ; Building materials. Ceramics. Glasses ; Ceramic industries ; CHALCOGENIDES ; Chemical industry and chemicals ; COMPOSITE MATERIALS ; DATA ; Exact sciences and technology ; EXPERIMENTAL DATA ; FABRICATION ; FIBERS ; FRACTURE PROPERTIES ; HEAT RESISTANT MATERIALS ; IMPREGNATION ; INFORMATION ; MATERIALS ; MATERIALS SCIENCE ; MECHANICAL PROPERTIES ; NUMERICAL DATA ; OXIDES ; OXYGEN COMPOUNDS ; Structural ceramics ; Technical ceramics ; TRANSITION ELEMENT COMPOUNDS ; ZIRCONIUM COMPOUNDS ; ZIRCONIUM OXIDES</subject><ispartof>Journal of the American Ceramic Society, 1994-05, Vol.77 (5), p.1361-1365</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3861-2fbe164002b90e652e1ed4a58277038d2846666ca016d7c3b3ed24d37da30feb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1994.tb05416.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1994.tb05416.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4097720$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7114725$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chou, Yeong-Shyung</creatorcontrib><creatorcontrib>Ramberg, C. Eric</creatorcontrib><creatorcontrib>Hellmann, John R.</creatorcontrib><title>Fabrication of Continuous-Fiber-Reinforced Polycrystalline Oxide Composites via Molten Salt Infiltration</title><title>Journal of the American Ceramic Society</title><description>A novel molten nitrate salt infiltration technique was developed for the fabrication of continuous‐fiber‐reinforced polycrystalline‐alumina‐matrix composites containing a high volume fraction (47%) of small‐diameter fibers (Du Pont PRD 166 alumina/zirconia; 20‐μm diameter). A single infiltration resulted in sufficient matrix yield to permit densification of the resulting composites to &gt;93% of theoretical density with excellent microstructural uniformity. Hot‐pressed composites fabricated in this manner exhibited Young's modulus of 270GPa, flexural strengths of 272 ± 20 MPa, and fracture toughness of 3.35 ± 0.37 MPa·ml/2. Primary fracture origins were localized regions of interfiber porosity, which were attributed to incomplete fiber tow infiltration. Fractographic analysis revealed lack of fiber pullout, and emphasized the need for interfacial debonding agents (coatings) to achieve further toughening. Results have demonstrated the utility of molten‐salt‐matrix precursors for the fabrication of polycrystalline‐matrix composites containing high volume fractions of continuous, small‐diameter ceramic fibers.</description><subject>360601 - Other Materials- Preparation &amp; Manufacture</subject><subject>360603 - Materials- Properties</subject><subject>ALUMINIUM COMPOUNDS</subject><subject>ALUMINIUM OXIDES</subject><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>CHALCOGENIDES</subject><subject>Chemical industry and chemicals</subject><subject>COMPOSITE MATERIALS</subject><subject>DATA</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>FABRICATION</subject><subject>FIBERS</subject><subject>FRACTURE PROPERTIES</subject><subject>HEAT RESISTANT MATERIALS</subject><subject>IMPREGNATION</subject><subject>INFORMATION</subject><subject>MATERIALS</subject><subject>MATERIALS SCIENCE</subject><subject>MECHANICAL PROPERTIES</subject><subject>NUMERICAL DATA</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>Structural ceramics</subject><subject>Technical ceramics</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>ZIRCONIUM COMPOUNDS</subject><subject>ZIRCONIUM OXIDES</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqVkU1vEzEQhi0EEqHwH1YV4rbBH7v2mhNV2pR-UVRAHC2vd1Z1cOxgO5D8exw26p25jEbzzDtjvwidEjwnJd6vSmpJTSXhcyJlM889bptS7J6hGWmPredohjGmtegofolepbQqJZFdM0OPS91Ha3S2wVdhrBbBZ-u3YZvqpe0h1g9g_RiigaH6EtzexH3K2jnrobrf2QHKxHoTks2Qqt9WV3fBZfDVV-1ydeVH63L8J_4avRi1S_DmmE_Q9-XFt8Wn-vb-8mpxdlsb1vFy7tgD4U25tpcYeEuBwNDotqNCYNYNtGt4CaMx4YMwrGcw0GZgYtAMj9CzE3Q66YaUrUqmHGYeTfAeTFaCkEbQtkDvJmgTw68tpKzWNhlwTnsoT1eUMy6plAX8MIEmhpQijGoT7VrHvSJYHRxQK3VwQB2-WR0cUEcH1K4Mvz1u0cloN0btjU1PCg2WQlBcsI8T9sc62P_HAnV9trggjJMiUU8SNmXYPUno-FNxwUSrfny-VOTm7qal1-fqgf0FwvyrAA</recordid><startdate>199405</startdate><enddate>199405</enddate><creator>Chou, Yeong-Shyung</creator><creator>Ramberg, C. Eric</creator><creator>Hellmann, John R.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>199405</creationdate><title>Fabrication of Continuous-Fiber-Reinforced Polycrystalline Oxide Composites via Molten Salt Infiltration</title><author>Chou, Yeong-Shyung ; Ramberg, C. Eric ; Hellmann, John R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3861-2fbe164002b90e652e1ed4a58277038d2846666ca016d7c3b3ed24d37da30feb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>360601 - Other Materials- Preparation &amp; Manufacture</topic><topic>360603 - Materials- Properties</topic><topic>ALUMINIUM COMPOUNDS</topic><topic>ALUMINIUM OXIDES</topic><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>CHALCOGENIDES</topic><topic>Chemical industry and chemicals</topic><topic>COMPOSITE MATERIALS</topic><topic>DATA</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>FABRICATION</topic><topic>FIBERS</topic><topic>FRACTURE PROPERTIES</topic><topic>HEAT RESISTANT MATERIALS</topic><topic>IMPREGNATION</topic><topic>INFORMATION</topic><topic>MATERIALS</topic><topic>MATERIALS SCIENCE</topic><topic>MECHANICAL PROPERTIES</topic><topic>NUMERICAL DATA</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>Structural ceramics</topic><topic>Technical ceramics</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>ZIRCONIUM COMPOUNDS</topic><topic>ZIRCONIUM OXIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chou, Yeong-Shyung</creatorcontrib><creatorcontrib>Ramberg, C. Eric</creatorcontrib><creatorcontrib>Hellmann, John R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chou, Yeong-Shyung</au><au>Ramberg, C. Eric</au><au>Hellmann, John R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Continuous-Fiber-Reinforced Polycrystalline Oxide Composites via Molten Salt Infiltration</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1994-05</date><risdate>1994</risdate><volume>77</volume><issue>5</issue><spage>1361</spage><epage>1365</epage><pages>1361-1365</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>A novel molten nitrate salt infiltration technique was developed for the fabrication of continuous‐fiber‐reinforced polycrystalline‐alumina‐matrix composites containing a high volume fraction (47%) of small‐diameter fibers (Du Pont PRD 166 alumina/zirconia; 20‐μm diameter). A single infiltration resulted in sufficient matrix yield to permit densification of the resulting composites to &gt;93% of theoretical density with excellent microstructural uniformity. Hot‐pressed composites fabricated in this manner exhibited Young's modulus of 270GPa, flexural strengths of 272 ± 20 MPa, and fracture toughness of 3.35 ± 0.37 MPa·ml/2. Primary fracture origins were localized regions of interfiber porosity, which were attributed to incomplete fiber tow infiltration. Fractographic analysis revealed lack of fiber pullout, and emphasized the need for interfacial debonding agents (coatings) to achieve further toughening. Results have demonstrated the utility of molten‐salt‐matrix precursors for the fabrication of polycrystalline‐matrix composites containing high volume fractions of continuous, small‐diameter ceramic fibers.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1994.tb05416.x</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 1994-05, Vol.77 (5), p.1361-1365
issn 0002-7820
1551-2916
language eng
recordid cdi_osti_scitechconnect_7114725
source Wiley Online Library Journals Frontfile Complete
subjects 360601 - Other Materials- Preparation & Manufacture
360603 - Materials- Properties
ALUMINIUM COMPOUNDS
ALUMINIUM OXIDES
Applied sciences
Building materials. Ceramics. Glasses
Ceramic industries
CHALCOGENIDES
Chemical industry and chemicals
COMPOSITE MATERIALS
DATA
Exact sciences and technology
EXPERIMENTAL DATA
FABRICATION
FIBERS
FRACTURE PROPERTIES
HEAT RESISTANT MATERIALS
IMPREGNATION
INFORMATION
MATERIALS
MATERIALS SCIENCE
MECHANICAL PROPERTIES
NUMERICAL DATA
OXIDES
OXYGEN COMPOUNDS
Structural ceramics
Technical ceramics
TRANSITION ELEMENT COMPOUNDS
ZIRCONIUM COMPOUNDS
ZIRCONIUM OXIDES
title Fabrication of Continuous-Fiber-Reinforced Polycrystalline Oxide Composites via Molten Salt Infiltration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Continuous-Fiber-Reinforced%20Polycrystalline%20Oxide%20Composites%20via%20Molten%20Salt%20Infiltration&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Chou,%20Yeong-Shyung&rft.date=1994-05&rft.volume=77&rft.issue=5&rft.spage=1361&rft.epage=1365&rft.pages=1361-1365&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.1994.tb05416.x&rft_dat=%3Cproquest_osti_%3E26369299%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26369299&rft_id=info:pmid/&rfr_iscdi=true