Turbulent deposition and trapping of aerosols at a wall
The trajectories of aerosols are computed in a high‐resolution direct numerical simulation of turbulent flow in a vertical channel. The aerosol equation of motion includes only a Stokes drag force and the influence of the aerosols on the gas flow is assumed to be negligible. Since the flow is vertic...
Gespeichert in:
Veröffentlicht in: | Physics of fluids. A, Fluid dynamics Fluid dynamics, 1992-04, Vol.4 (4), p.825-834 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 834 |
---|---|
container_issue | 4 |
container_start_page | 825 |
container_title | Physics of fluids. A, Fluid dynamics |
container_volume | 4 |
creator | Brooke, John W. Kontomaris, K. Hanratty, T. J. McLaughlin, John B. |
description | The trajectories of aerosols are computed in a high‐resolution direct numerical simulation of turbulent flow in a vertical channel. The aerosol equation of motion includes only a Stokes drag force and the influence of the aerosols on the gas flow is assumed to be negligible. Since the flow is vertical, aerosols deposit as a consequence of the turbulent fluctuations and their own inertia. It is shown that the eddies which are responsible for aerosol deposition are the same eddies that control turbulence production. Typical aerosol trajectories are shown and related to eddy structure. A free‐flight theory suggested by Friedlander and Johnstone [Ind. Eng. Chem. 4
9, 1151 (1957)] is found to be based on reasonable assumptions about typical velocities of depositing aerosols as they pass through the viscous sublayer, but the theory is shown to be deficient in other respects. The distribution of normal velocities of the aerosols that deposit is compared to the distribution of fluid particle velocities in the viscous sublayer and some support is found for the notion that the probability distribution of Eulerian velocities may be useful in predicting deposition. |
doi_str_mv | 10.1063/1.858299 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7049276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_858299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-5aa2bc0d21a9573b63a87d8915944f9c0196e9dccf7aea506fc33211f0a189e63</originalsourceid><addsrcrecordid>eNp90M1KxDAUBeAgCo6j4CMEcaGLjrlJkzZLGfyDATfjOtxJE63UpiQZxbd3SmU2gqu7-Tjncgg5B7YApsQNLGpZc60PyIyDEoVkIA7JjNVaFzUHcUxOUnpnjJdQljNSrbdxs-1cn2njhpDa3IaeYt_QHHEY2v6VBk_RxZBClyhmivQLu-6UHHnskjv7vXPycn-3Xj4Wq-eHp-XtqrAlyFxIRL6xrOGAWlZiowTWVVNrkLosvbYMtHK6sdZX6FAy5a0QHMAzhFo7JebkYsoNKbcm2TY7-2ZD3zubTcVKzasRXU3I7t5M0XkzxPYD47cBZsZVDJhplR29nOiAyWLnI_a2TXsvQVUK-I5dT2xsxHGTPfkMcR9nhsb_Z__U_wA42nuA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Turbulent deposition and trapping of aerosols at a wall</title><source>AIP Digital Archive</source><creator>Brooke, John W. ; Kontomaris, K. ; Hanratty, T. J. ; McLaughlin, John B.</creator><creatorcontrib>Brooke, John W. ; Kontomaris, K. ; Hanratty, T. J. ; McLaughlin, John B.</creatorcontrib><description>The trajectories of aerosols are computed in a high‐resolution direct numerical simulation of turbulent flow in a vertical channel. The aerosol equation of motion includes only a Stokes drag force and the influence of the aerosols on the gas flow is assumed to be negligible. Since the flow is vertical, aerosols deposit as a consequence of the turbulent fluctuations and their own inertia. It is shown that the eddies which are responsible for aerosol deposition are the same eddies that control turbulence production. Typical aerosol trajectories are shown and related to eddy structure. A free‐flight theory suggested by Friedlander and Johnstone [Ind. Eng. Chem. 4
9, 1151 (1957)] is found to be based on reasonable assumptions about typical velocities of depositing aerosols as they pass through the viscous sublayer, but the theory is shown to be deficient in other respects. The distribution of normal velocities of the aerosols that deposit is compared to the distribution of fluid particle velocities in the viscous sublayer and some support is found for the notion that the probability distribution of Eulerian velocities may be useful in predicting deposition.</description><identifier>ISSN: 0899-8213</identifier><identifier>EISSN: 2163-5013</identifier><identifier>DOI: 10.1063/1.858299</identifier><identifier>CODEN: PFADEB</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics AIP</publisher><subject>661300 - Other Aspects of Physical Science- (1992-) ; AEROSOLS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COLLOIDS ; DEPOSITION ; DISPERSIONS ; DISTRIBUTION FUNCTIONS ; DRAG ; Exact sciences and technology ; Fluid dynamics ; FLUID FLOW ; FUNCTIONS ; Fundamental areas of phenomenology (including applications) ; Nonhomogeneous flows ; NUMERICAL SOLUTION ; Physics ; RELAXATION TIME ; REYNOLDS NUMBER ; SOLS ; STOKES LAW ; TRAJECTORIES ; TRAPPING ; TURBULENT FLOW ; VISCOUS FLOW ; WALL EFFECTS</subject><ispartof>Physics of fluids. A, Fluid dynamics, 1992-04, Vol.4 (4), p.825-834</ispartof><rights>American Institute of Physics</rights><rights>1992 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-5aa2bc0d21a9573b63a87d8915944f9c0196e9dccf7aea506fc33211f0a189e63</citedby><cites>FETCH-LOGICAL-c415t-5aa2bc0d21a9573b63a87d8915944f9c0196e9dccf7aea506fc33211f0a189e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1559,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5167612$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7049276$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brooke, John W.</creatorcontrib><creatorcontrib>Kontomaris, K.</creatorcontrib><creatorcontrib>Hanratty, T. J.</creatorcontrib><creatorcontrib>McLaughlin, John B.</creatorcontrib><title>Turbulent deposition and trapping of aerosols at a wall</title><title>Physics of fluids. A, Fluid dynamics</title><description>The trajectories of aerosols are computed in a high‐resolution direct numerical simulation of turbulent flow in a vertical channel. The aerosol equation of motion includes only a Stokes drag force and the influence of the aerosols on the gas flow is assumed to be negligible. Since the flow is vertical, aerosols deposit as a consequence of the turbulent fluctuations and their own inertia. It is shown that the eddies which are responsible for aerosol deposition are the same eddies that control turbulence production. Typical aerosol trajectories are shown and related to eddy structure. A free‐flight theory suggested by Friedlander and Johnstone [Ind. Eng. Chem. 4
9, 1151 (1957)] is found to be based on reasonable assumptions about typical velocities of depositing aerosols as they pass through the viscous sublayer, but the theory is shown to be deficient in other respects. The distribution of normal velocities of the aerosols that deposit is compared to the distribution of fluid particle velocities in the viscous sublayer and some support is found for the notion that the probability distribution of Eulerian velocities may be useful in predicting deposition.</description><subject>661300 - Other Aspects of Physical Science- (1992-)</subject><subject>AEROSOLS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COLLOIDS</subject><subject>DEPOSITION</subject><subject>DISPERSIONS</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>DRAG</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>FLUID FLOW</subject><subject>FUNCTIONS</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Nonhomogeneous flows</subject><subject>NUMERICAL SOLUTION</subject><subject>Physics</subject><subject>RELAXATION TIME</subject><subject>REYNOLDS NUMBER</subject><subject>SOLS</subject><subject>STOKES LAW</subject><subject>TRAJECTORIES</subject><subject>TRAPPING</subject><subject>TURBULENT FLOW</subject><subject>VISCOUS FLOW</subject><subject>WALL EFFECTS</subject><issn>0899-8213</issn><issn>2163-5013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp90M1KxDAUBeAgCo6j4CMEcaGLjrlJkzZLGfyDATfjOtxJE63UpiQZxbd3SmU2gqu7-Tjncgg5B7YApsQNLGpZc60PyIyDEoVkIA7JjNVaFzUHcUxOUnpnjJdQljNSrbdxs-1cn2njhpDa3IaeYt_QHHEY2v6VBk_RxZBClyhmivQLu-6UHHnskjv7vXPycn-3Xj4Wq-eHp-XtqrAlyFxIRL6xrOGAWlZiowTWVVNrkLosvbYMtHK6sdZX6FAy5a0QHMAzhFo7JebkYsoNKbcm2TY7-2ZD3zubTcVKzasRXU3I7t5M0XkzxPYD47cBZsZVDJhplR29nOiAyWLnI_a2TXsvQVUK-I5dT2xsxHGTPfkMcR9nhsb_Z__U_wA42nuA</recordid><startdate>19920401</startdate><enddate>19920401</enddate><creator>Brooke, John W.</creator><creator>Kontomaris, K.</creator><creator>Hanratty, T. J.</creator><creator>McLaughlin, John B.</creator><general>American Institute of Physics AIP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19920401</creationdate><title>Turbulent deposition and trapping of aerosols at a wall</title><author>Brooke, John W. ; Kontomaris, K. ; Hanratty, T. J. ; McLaughlin, John B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-5aa2bc0d21a9573b63a87d8915944f9c0196e9dccf7aea506fc33211f0a189e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>661300 - Other Aspects of Physical Science- (1992-)</topic><topic>AEROSOLS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COLLOIDS</topic><topic>DEPOSITION</topic><topic>DISPERSIONS</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>DRAG</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>FLUID FLOW</topic><topic>FUNCTIONS</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Nonhomogeneous flows</topic><topic>NUMERICAL SOLUTION</topic><topic>Physics</topic><topic>RELAXATION TIME</topic><topic>REYNOLDS NUMBER</topic><topic>SOLS</topic><topic>STOKES LAW</topic><topic>TRAJECTORIES</topic><topic>TRAPPING</topic><topic>TURBULENT FLOW</topic><topic>VISCOUS FLOW</topic><topic>WALL EFFECTS</topic><toplevel>online_resources</toplevel><creatorcontrib>Brooke, John W.</creatorcontrib><creatorcontrib>Kontomaris, K.</creatorcontrib><creatorcontrib>Hanratty, T. J.</creatorcontrib><creatorcontrib>McLaughlin, John B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of fluids. A, Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brooke, John W.</au><au>Kontomaris, K.</au><au>Hanratty, T. J.</au><au>McLaughlin, John B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent deposition and trapping of aerosols at a wall</atitle><jtitle>Physics of fluids. A, Fluid dynamics</jtitle><date>1992-04-01</date><risdate>1992</risdate><volume>4</volume><issue>4</issue><spage>825</spage><epage>834</epage><pages>825-834</pages><issn>0899-8213</issn><eissn>2163-5013</eissn><coden>PFADEB</coden><abstract>The trajectories of aerosols are computed in a high‐resolution direct numerical simulation of turbulent flow in a vertical channel. The aerosol equation of motion includes only a Stokes drag force and the influence of the aerosols on the gas flow is assumed to be negligible. Since the flow is vertical, aerosols deposit as a consequence of the turbulent fluctuations and their own inertia. It is shown that the eddies which are responsible for aerosol deposition are the same eddies that control turbulence production. Typical aerosol trajectories are shown and related to eddy structure. A free‐flight theory suggested by Friedlander and Johnstone [Ind. Eng. Chem. 4
9, 1151 (1957)] is found to be based on reasonable assumptions about typical velocities of depositing aerosols as they pass through the viscous sublayer, but the theory is shown to be deficient in other respects. The distribution of normal velocities of the aerosols that deposit is compared to the distribution of fluid particle velocities in the viscous sublayer and some support is found for the notion that the probability distribution of Eulerian velocities may be useful in predicting deposition.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics AIP</pub><doi>10.1063/1.858299</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-8213 |
ispartof | Physics of fluids. A, Fluid dynamics, 1992-04, Vol.4 (4), p.825-834 |
issn | 0899-8213 2163-5013 |
language | eng |
recordid | cdi_osti_scitechconnect_7049276 |
source | AIP Digital Archive |
subjects | 661300 - Other Aspects of Physical Science- (1992-) AEROSOLS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COLLOIDS DEPOSITION DISPERSIONS DISTRIBUTION FUNCTIONS DRAG Exact sciences and technology Fluid dynamics FLUID FLOW FUNCTIONS Fundamental areas of phenomenology (including applications) Nonhomogeneous flows NUMERICAL SOLUTION Physics RELAXATION TIME REYNOLDS NUMBER SOLS STOKES LAW TRAJECTORIES TRAPPING TURBULENT FLOW VISCOUS FLOW WALL EFFECTS |
title | Turbulent deposition and trapping of aerosols at a wall |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20deposition%20and%20trapping%20of%20aerosols%20at%20a%20wall&rft.jtitle=Physics%20of%20fluids.%20A,%20Fluid%20dynamics&rft.au=Brooke,%20John%20W.&rft.date=1992-04-01&rft.volume=4&rft.issue=4&rft.spage=825&rft.epage=834&rft.pages=825-834&rft.issn=0899-8213&rft.eissn=2163-5013&rft.coden=PFADEB&rft_id=info:doi/10.1063/1.858299&rft_dat=%3Cscitation_osti_%3Escitation_primary_10_1063_1_858299%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |