Turbulent deposition and trapping of aerosols at a wall

The trajectories of aerosols are computed in a high‐resolution direct numerical simulation of turbulent flow in a vertical channel. The aerosol equation of motion includes only a Stokes drag force and the influence of the aerosols on the gas flow is assumed to be negligible. Since the flow is vertic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids. A, Fluid dynamics Fluid dynamics, 1992-04, Vol.4 (4), p.825-834
Hauptverfasser: Brooke, John W., Kontomaris, K., Hanratty, T. J., McLaughlin, John B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 834
container_issue 4
container_start_page 825
container_title Physics of fluids. A, Fluid dynamics
container_volume 4
creator Brooke, John W.
Kontomaris, K.
Hanratty, T. J.
McLaughlin, John B.
description The trajectories of aerosols are computed in a high‐resolution direct numerical simulation of turbulent flow in a vertical channel. The aerosol equation of motion includes only a Stokes drag force and the influence of the aerosols on the gas flow is assumed to be negligible. Since the flow is vertical, aerosols deposit as a consequence of the turbulent fluctuations and their own inertia. It is shown that the eddies which are responsible for aerosol deposition are the same eddies that control turbulence production. Typical aerosol trajectories are shown and related to eddy structure. A free‐flight theory suggested by Friedlander and Johnstone [Ind. Eng. Chem. 4 9, 1151 (1957)] is found to be based on reasonable assumptions about typical velocities of depositing aerosols as they pass through the viscous sublayer, but the theory is shown to be deficient in other respects. The distribution of normal velocities of the aerosols that deposit is compared to the distribution of fluid particle velocities in the viscous sublayer and some support is found for the notion that the probability distribution of Eulerian velocities may be useful in predicting deposition.
doi_str_mv 10.1063/1.858299
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7049276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_858299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-5aa2bc0d21a9573b63a87d8915944f9c0196e9dccf7aea506fc33211f0a189e63</originalsourceid><addsrcrecordid>eNp90M1KxDAUBeAgCo6j4CMEcaGLjrlJkzZLGfyDATfjOtxJE63UpiQZxbd3SmU2gqu7-Tjncgg5B7YApsQNLGpZc60PyIyDEoVkIA7JjNVaFzUHcUxOUnpnjJdQljNSrbdxs-1cn2njhpDa3IaeYt_QHHEY2v6VBk_RxZBClyhmivQLu-6UHHnskjv7vXPycn-3Xj4Wq-eHp-XtqrAlyFxIRL6xrOGAWlZiowTWVVNrkLosvbYMtHK6sdZX6FAy5a0QHMAzhFo7JebkYsoNKbcm2TY7-2ZD3zubTcVKzasRXU3I7t5M0XkzxPYD47cBZsZVDJhplR29nOiAyWLnI_a2TXsvQVUK-I5dT2xsxHGTPfkMcR9nhsb_Z__U_wA42nuA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Turbulent deposition and trapping of aerosols at a wall</title><source>AIP Digital Archive</source><creator>Brooke, John W. ; Kontomaris, K. ; Hanratty, T. J. ; McLaughlin, John B.</creator><creatorcontrib>Brooke, John W. ; Kontomaris, K. ; Hanratty, T. J. ; McLaughlin, John B.</creatorcontrib><description>The trajectories of aerosols are computed in a high‐resolution direct numerical simulation of turbulent flow in a vertical channel. The aerosol equation of motion includes only a Stokes drag force and the influence of the aerosols on the gas flow is assumed to be negligible. Since the flow is vertical, aerosols deposit as a consequence of the turbulent fluctuations and their own inertia. It is shown that the eddies which are responsible for aerosol deposition are the same eddies that control turbulence production. Typical aerosol trajectories are shown and related to eddy structure. A free‐flight theory suggested by Friedlander and Johnstone [Ind. Eng. Chem. 4 9, 1151 (1957)] is found to be based on reasonable assumptions about typical velocities of depositing aerosols as they pass through the viscous sublayer, but the theory is shown to be deficient in other respects. The distribution of normal velocities of the aerosols that deposit is compared to the distribution of fluid particle velocities in the viscous sublayer and some support is found for the notion that the probability distribution of Eulerian velocities may be useful in predicting deposition.</description><identifier>ISSN: 0899-8213</identifier><identifier>EISSN: 2163-5013</identifier><identifier>DOI: 10.1063/1.858299</identifier><identifier>CODEN: PFADEB</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics AIP</publisher><subject>661300 - Other Aspects of Physical Science- (1992-) ; AEROSOLS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COLLOIDS ; DEPOSITION ; DISPERSIONS ; DISTRIBUTION FUNCTIONS ; DRAG ; Exact sciences and technology ; Fluid dynamics ; FLUID FLOW ; FUNCTIONS ; Fundamental areas of phenomenology (including applications) ; Nonhomogeneous flows ; NUMERICAL SOLUTION ; Physics ; RELAXATION TIME ; REYNOLDS NUMBER ; SOLS ; STOKES LAW ; TRAJECTORIES ; TRAPPING ; TURBULENT FLOW ; VISCOUS FLOW ; WALL EFFECTS</subject><ispartof>Physics of fluids. A, Fluid dynamics, 1992-04, Vol.4 (4), p.825-834</ispartof><rights>American Institute of Physics</rights><rights>1992 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-5aa2bc0d21a9573b63a87d8915944f9c0196e9dccf7aea506fc33211f0a189e63</citedby><cites>FETCH-LOGICAL-c415t-5aa2bc0d21a9573b63a87d8915944f9c0196e9dccf7aea506fc33211f0a189e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1559,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5167612$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7049276$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brooke, John W.</creatorcontrib><creatorcontrib>Kontomaris, K.</creatorcontrib><creatorcontrib>Hanratty, T. J.</creatorcontrib><creatorcontrib>McLaughlin, John B.</creatorcontrib><title>Turbulent deposition and trapping of aerosols at a wall</title><title>Physics of fluids. A, Fluid dynamics</title><description>The trajectories of aerosols are computed in a high‐resolution direct numerical simulation of turbulent flow in a vertical channel. The aerosol equation of motion includes only a Stokes drag force and the influence of the aerosols on the gas flow is assumed to be negligible. Since the flow is vertical, aerosols deposit as a consequence of the turbulent fluctuations and their own inertia. It is shown that the eddies which are responsible for aerosol deposition are the same eddies that control turbulence production. Typical aerosol trajectories are shown and related to eddy structure. A free‐flight theory suggested by Friedlander and Johnstone [Ind. Eng. Chem. 4 9, 1151 (1957)] is found to be based on reasonable assumptions about typical velocities of depositing aerosols as they pass through the viscous sublayer, but the theory is shown to be deficient in other respects. The distribution of normal velocities of the aerosols that deposit is compared to the distribution of fluid particle velocities in the viscous sublayer and some support is found for the notion that the probability distribution of Eulerian velocities may be useful in predicting deposition.</description><subject>661300 - Other Aspects of Physical Science- (1992-)</subject><subject>AEROSOLS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COLLOIDS</subject><subject>DEPOSITION</subject><subject>DISPERSIONS</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>DRAG</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>FLUID FLOW</subject><subject>FUNCTIONS</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Nonhomogeneous flows</subject><subject>NUMERICAL SOLUTION</subject><subject>Physics</subject><subject>RELAXATION TIME</subject><subject>REYNOLDS NUMBER</subject><subject>SOLS</subject><subject>STOKES LAW</subject><subject>TRAJECTORIES</subject><subject>TRAPPING</subject><subject>TURBULENT FLOW</subject><subject>VISCOUS FLOW</subject><subject>WALL EFFECTS</subject><issn>0899-8213</issn><issn>2163-5013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp90M1KxDAUBeAgCo6j4CMEcaGLjrlJkzZLGfyDATfjOtxJE63UpiQZxbd3SmU2gqu7-Tjncgg5B7YApsQNLGpZc60PyIyDEoVkIA7JjNVaFzUHcUxOUnpnjJdQljNSrbdxs-1cn2njhpDa3IaeYt_QHHEY2v6VBk_RxZBClyhmivQLu-6UHHnskjv7vXPycn-3Xj4Wq-eHp-XtqrAlyFxIRL6xrOGAWlZiowTWVVNrkLosvbYMtHK6sdZX6FAy5a0QHMAzhFo7JebkYsoNKbcm2TY7-2ZD3zubTcVKzasRXU3I7t5M0XkzxPYD47cBZsZVDJhplR29nOiAyWLnI_a2TXsvQVUK-I5dT2xsxHGTPfkMcR9nhsb_Z__U_wA42nuA</recordid><startdate>19920401</startdate><enddate>19920401</enddate><creator>Brooke, John W.</creator><creator>Kontomaris, K.</creator><creator>Hanratty, T. J.</creator><creator>McLaughlin, John B.</creator><general>American Institute of Physics AIP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19920401</creationdate><title>Turbulent deposition and trapping of aerosols at a wall</title><author>Brooke, John W. ; Kontomaris, K. ; Hanratty, T. J. ; McLaughlin, John B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-5aa2bc0d21a9573b63a87d8915944f9c0196e9dccf7aea506fc33211f0a189e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>661300 - Other Aspects of Physical Science- (1992-)</topic><topic>AEROSOLS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COLLOIDS</topic><topic>DEPOSITION</topic><topic>DISPERSIONS</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>DRAG</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>FLUID FLOW</topic><topic>FUNCTIONS</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Nonhomogeneous flows</topic><topic>NUMERICAL SOLUTION</topic><topic>Physics</topic><topic>RELAXATION TIME</topic><topic>REYNOLDS NUMBER</topic><topic>SOLS</topic><topic>STOKES LAW</topic><topic>TRAJECTORIES</topic><topic>TRAPPING</topic><topic>TURBULENT FLOW</topic><topic>VISCOUS FLOW</topic><topic>WALL EFFECTS</topic><toplevel>online_resources</toplevel><creatorcontrib>Brooke, John W.</creatorcontrib><creatorcontrib>Kontomaris, K.</creatorcontrib><creatorcontrib>Hanratty, T. J.</creatorcontrib><creatorcontrib>McLaughlin, John B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of fluids. A, Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brooke, John W.</au><au>Kontomaris, K.</au><au>Hanratty, T. J.</au><au>McLaughlin, John B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent deposition and trapping of aerosols at a wall</atitle><jtitle>Physics of fluids. A, Fluid dynamics</jtitle><date>1992-04-01</date><risdate>1992</risdate><volume>4</volume><issue>4</issue><spage>825</spage><epage>834</epage><pages>825-834</pages><issn>0899-8213</issn><eissn>2163-5013</eissn><coden>PFADEB</coden><abstract>The trajectories of aerosols are computed in a high‐resolution direct numerical simulation of turbulent flow in a vertical channel. The aerosol equation of motion includes only a Stokes drag force and the influence of the aerosols on the gas flow is assumed to be negligible. Since the flow is vertical, aerosols deposit as a consequence of the turbulent fluctuations and their own inertia. It is shown that the eddies which are responsible for aerosol deposition are the same eddies that control turbulence production. Typical aerosol trajectories are shown and related to eddy structure. A free‐flight theory suggested by Friedlander and Johnstone [Ind. Eng. Chem. 4 9, 1151 (1957)] is found to be based on reasonable assumptions about typical velocities of depositing aerosols as they pass through the viscous sublayer, but the theory is shown to be deficient in other respects. The distribution of normal velocities of the aerosols that deposit is compared to the distribution of fluid particle velocities in the viscous sublayer and some support is found for the notion that the probability distribution of Eulerian velocities may be useful in predicting deposition.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics AIP</pub><doi>10.1063/1.858299</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0899-8213
ispartof Physics of fluids. A, Fluid dynamics, 1992-04, Vol.4 (4), p.825-834
issn 0899-8213
2163-5013
language eng
recordid cdi_osti_scitechconnect_7049276
source AIP Digital Archive
subjects 661300 - Other Aspects of Physical Science- (1992-)
AEROSOLS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COLLOIDS
DEPOSITION
DISPERSIONS
DISTRIBUTION FUNCTIONS
DRAG
Exact sciences and technology
Fluid dynamics
FLUID FLOW
FUNCTIONS
Fundamental areas of phenomenology (including applications)
Nonhomogeneous flows
NUMERICAL SOLUTION
Physics
RELAXATION TIME
REYNOLDS NUMBER
SOLS
STOKES LAW
TRAJECTORIES
TRAPPING
TURBULENT FLOW
VISCOUS FLOW
WALL EFFECTS
title Turbulent deposition and trapping of aerosols at a wall
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20deposition%20and%20trapping%20of%20aerosols%20at%20a%20wall&rft.jtitle=Physics%20of%20fluids.%20A,%20Fluid%20dynamics&rft.au=Brooke,%20John%20W.&rft.date=1992-04-01&rft.volume=4&rft.issue=4&rft.spage=825&rft.epage=834&rft.pages=825-834&rft.issn=0899-8213&rft.eissn=2163-5013&rft.coden=PFADEB&rft_id=info:doi/10.1063/1.858299&rft_dat=%3Cscitation_osti_%3Escitation_primary_10_1063_1_858299%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true