Finite representation of infinite query answers
We define here a formal notion of finite representation of infinite query answers in logic programs. We apply this notion to DatalognS programs may be infinite and consequently queries may have infinite answers. We present a method to finitely represent infinite least Herbrand models of DatalognS pr...
Gespeichert in:
Veröffentlicht in: | ACM transactions on database systems 1993-06, Vol.18 (2), p.181-223 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 223 |
---|---|
container_issue | 2 |
container_start_page | 181 |
container_title | ACM transactions on database systems |
container_volume | 18 |
creator | Chomicki, Jan Imieliński, Tomasz |
description | We define here a formal notion of finite representation of infinite query answers in logic programs. We apply this notion to DatalognS programs may be infinite and consequently queries may have infinite answers. We present a method to finitely represent infinite least Herbrand models of DatalognS program (and its underlying computational engine) can be forgotten. Given a query to be evaluated, it is easy to obtain from the relational specification finitely many answer substitutions that represent infinitely many answer substitutions to the query. The method involved is a combination of a simple, unificationless, computational mechanism (graph traversal, congruence closure, or term rewriting) and standard relational query evaluation methods. Second, a relational specification is effectively computable and its computation is no harder, in the sense of the complexity class, than answering yes-no queries. Our method is applicable to every range-restricted DatalognS program. We also show that for some very simple non-DatalognS logic programs, finite representations of query answers do not exist. |
doi_str_mv | 10.1145/151634.151635 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7049030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28924499</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-de7e05ca29184d5ec537e0d1f08330971dd309062058864297bccc2823fbd3ce3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKtHD94WEW_b5nM3OYpYFQpe9BzS2SxG2mzNbJH-e6Mpenph5pmH4SXkktEZY1LNmWKNkLPfUEdkwpRqa9lIeUwmVDS8VoapU3KG-EEpldq0EzJfhBhGXyW_TR59HN0YhlgNfRViX1afO5_2lYv45ROek5PerdFfHHJK3hYPr_dP9fLl8fn-blk70Zqx7nzrqQLHDdOyUx6UyIOO9VQLQU3Lui4HbThVWjeSm3YFAFxz0a86AV5MyXXxDjgGi5AfgXcYYvQw2pZKQwXN0G2BtmnIX-JoNwHBr9cu-mGHlmvDpTQmg3UBIQ2Iyfd2m8LGpb1l1P50Z0t3JVTmbw5ih-DWfXIRAv4dCd0oIXnGrgrmYPNvLIpvACl0GA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28924499</pqid></control><display><type>article</type><title>Finite representation of infinite query answers</title><source>ACM Digital Library Complete</source><creator>Chomicki, Jan ; Imieliński, Tomasz</creator><creatorcontrib>Chomicki, Jan ; Imieliński, Tomasz</creatorcontrib><description>We define here a formal notion of finite representation of infinite query answers in logic programs. We apply this notion to DatalognS programs may be infinite and consequently queries may have infinite answers. We present a method to finitely represent infinite least Herbrand models of DatalognS program (and its underlying computational engine) can be forgotten. Given a query to be evaluated, it is easy to obtain from the relational specification finitely many answer substitutions that represent infinitely many answer substitutions to the query. The method involved is a combination of a simple, unificationless, computational mechanism (graph traversal, congruence closure, or term rewriting) and standard relational query evaluation methods. Second, a relational specification is effectively computable and its computation is no harder, in the sense of the complexity class, than answering yes-no queries. Our method is applicable to every range-restricted DatalognS program. We also show that for some very simple non-DatalognS logic programs, finite representations of query answers do not exist.</description><identifier>ISSN: 0362-5915</identifier><identifier>EISSN: 1557-4644</identifier><identifier>DOI: 10.1145/151634.151635</identifier><identifier>CODEN: ATDSD3</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>990200 - Mathematics & Computers ; Applied sciences ; Artificial intelligence ; Computability ; Computer science; control theory; systems ; Computing methodologies ; DATA BASE MANAGEMENT ; Data management systems ; DATA PROCESSING ; Database query languages (principles) ; Database theory ; Design and analysis of algorithms ; Exact sciences and technology ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; INFORMATION RETRIEVAL ; Information systems ; Information systems. Data bases ; Knowledge representation and reasoning ; Logic ; Machine learning ; Machine learning approaches ; MANAGEMENT ; Memory organisation. Data processing ; Models of computation ; PROCESSING ; Query languages ; Rule learning ; Software ; TASK SCHEDULING ; Theory and algorithms for application domains ; Theory of computation</subject><ispartof>ACM transactions on database systems, 1993-06, Vol.18 (2), p.181-223</ispartof><rights>ACM</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-de7e05ca29184d5ec537e0d1f08330971dd309062058864297bccc2823fbd3ce3</citedby><cites>FETCH-LOGICAL-a379t-de7e05ca29184d5ec537e0d1f08330971dd309062058864297bccc2823fbd3ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/151634.151635$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>230,314,776,780,881,2276,27903,27904,40175,75974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3865342$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7049030$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chomicki, Jan</creatorcontrib><creatorcontrib>Imieliński, Tomasz</creatorcontrib><title>Finite representation of infinite query answers</title><title>ACM transactions on database systems</title><addtitle>ACM TODS</addtitle><description>We define here a formal notion of finite representation of infinite query answers in logic programs. We apply this notion to DatalognS programs may be infinite and consequently queries may have infinite answers. We present a method to finitely represent infinite least Herbrand models of DatalognS program (and its underlying computational engine) can be forgotten. Given a query to be evaluated, it is easy to obtain from the relational specification finitely many answer substitutions that represent infinitely many answer substitutions to the query. The method involved is a combination of a simple, unificationless, computational mechanism (graph traversal, congruence closure, or term rewriting) and standard relational query evaluation methods. Second, a relational specification is effectively computable and its computation is no harder, in the sense of the complexity class, than answering yes-no queries. Our method is applicable to every range-restricted DatalognS program. We also show that for some very simple non-DatalognS logic programs, finite representations of query answers do not exist.</description><subject>990200 - Mathematics & Computers</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computability</subject><subject>Computer science; control theory; systems</subject><subject>Computing methodologies</subject><subject>DATA BASE MANAGEMENT</subject><subject>Data management systems</subject><subject>DATA PROCESSING</subject><subject>Database query languages (principles)</subject><subject>Database theory</subject><subject>Design and analysis of algorithms</subject><subject>Exact sciences and technology</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>INFORMATION RETRIEVAL</subject><subject>Information systems</subject><subject>Information systems. Data bases</subject><subject>Knowledge representation and reasoning</subject><subject>Logic</subject><subject>Machine learning</subject><subject>Machine learning approaches</subject><subject>MANAGEMENT</subject><subject>Memory organisation. Data processing</subject><subject>Models of computation</subject><subject>PROCESSING</subject><subject>Query languages</subject><subject>Rule learning</subject><subject>Software</subject><subject>TASK SCHEDULING</subject><subject>Theory and algorithms for application domains</subject><subject>Theory of computation</subject><issn>0362-5915</issn><issn>1557-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKtHD94WEW_b5nM3OYpYFQpe9BzS2SxG2mzNbJH-e6Mpenph5pmH4SXkktEZY1LNmWKNkLPfUEdkwpRqa9lIeUwmVDS8VoapU3KG-EEpldq0EzJfhBhGXyW_TR59HN0YhlgNfRViX1afO5_2lYv45ROek5PerdFfHHJK3hYPr_dP9fLl8fn-blk70Zqx7nzrqQLHDdOyUx6UyIOO9VQLQU3Lui4HbThVWjeSm3YFAFxz0a86AV5MyXXxDjgGi5AfgXcYYvQw2pZKQwXN0G2BtmnIX-JoNwHBr9cu-mGHlmvDpTQmg3UBIQ2Iyfd2m8LGpb1l1P50Z0t3JVTmbw5ih-DWfXIRAv4dCd0oIXnGrgrmYPNvLIpvACl0GA</recordid><startdate>19930601</startdate><enddate>19930601</enddate><creator>Chomicki, Jan</creator><creator>Imieliński, Tomasz</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>19930601</creationdate><title>Finite representation of infinite query answers</title><author>Chomicki, Jan ; Imieliński, Tomasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-de7e05ca29184d5ec537e0d1f08330971dd309062058864297bccc2823fbd3ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>990200 - Mathematics & Computers</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computability</topic><topic>Computer science; control theory; systems</topic><topic>Computing methodologies</topic><topic>DATA BASE MANAGEMENT</topic><topic>Data management systems</topic><topic>DATA PROCESSING</topic><topic>Database query languages (principles)</topic><topic>Database theory</topic><topic>Design and analysis of algorithms</topic><topic>Exact sciences and technology</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>INFORMATION RETRIEVAL</topic><topic>Information systems</topic><topic>Information systems. Data bases</topic><topic>Knowledge representation and reasoning</topic><topic>Logic</topic><topic>Machine learning</topic><topic>Machine learning approaches</topic><topic>MANAGEMENT</topic><topic>Memory organisation. Data processing</topic><topic>Models of computation</topic><topic>PROCESSING</topic><topic>Query languages</topic><topic>Rule learning</topic><topic>Software</topic><topic>TASK SCHEDULING</topic><topic>Theory and algorithms for application domains</topic><topic>Theory of computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chomicki, Jan</creatorcontrib><creatorcontrib>Imieliński, Tomasz</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>ACM transactions on database systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chomicki, Jan</au><au>Imieliński, Tomasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite representation of infinite query answers</atitle><jtitle>ACM transactions on database systems</jtitle><stitle>ACM TODS</stitle><date>1993-06-01</date><risdate>1993</risdate><volume>18</volume><issue>2</issue><spage>181</spage><epage>223</epage><pages>181-223</pages><issn>0362-5915</issn><eissn>1557-4644</eissn><coden>ATDSD3</coden><abstract>We define here a formal notion of finite representation of infinite query answers in logic programs. We apply this notion to DatalognS programs may be infinite and consequently queries may have infinite answers. We present a method to finitely represent infinite least Herbrand models of DatalognS program (and its underlying computational engine) can be forgotten. Given a query to be evaluated, it is easy to obtain from the relational specification finitely many answer substitutions that represent infinitely many answer substitutions to the query. The method involved is a combination of a simple, unificationless, computational mechanism (graph traversal, congruence closure, or term rewriting) and standard relational query evaluation methods. Second, a relational specification is effectively computable and its computation is no harder, in the sense of the complexity class, than answering yes-no queries. Our method is applicable to every range-restricted DatalognS program. We also show that for some very simple non-DatalognS logic programs, finite representations of query answers do not exist.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/151634.151635</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-5915 |
ispartof | ACM transactions on database systems, 1993-06, Vol.18 (2), p.181-223 |
issn | 0362-5915 1557-4644 |
language | eng |
recordid | cdi_osti_scitechconnect_7049030 |
source | ACM Digital Library Complete |
subjects | 990200 - Mathematics & Computers Applied sciences Artificial intelligence Computability Computer science control theory systems Computing methodologies DATA BASE MANAGEMENT Data management systems DATA PROCESSING Database query languages (principles) Database theory Design and analysis of algorithms Exact sciences and technology GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE INFORMATION RETRIEVAL Information systems Information systems. Data bases Knowledge representation and reasoning Logic Machine learning Machine learning approaches MANAGEMENT Memory organisation. Data processing Models of computation PROCESSING Query languages Rule learning Software TASK SCHEDULING Theory and algorithms for application domains Theory of computation |
title | Finite representation of infinite query answers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20representation%20of%20infinite%20query%20answers&rft.jtitle=ACM%20transactions%20on%20database%20systems&rft.au=Chomicki,%20Jan&rft.date=1993-06-01&rft.volume=18&rft.issue=2&rft.spage=181&rft.epage=223&rft.pages=181-223&rft.issn=0362-5915&rft.eissn=1557-4644&rft.coden=ATDSD3&rft_id=info:doi/10.1145/151634.151635&rft_dat=%3Cproquest_osti_%3E28924499%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28924499&rft_id=info:pmid/&rfr_iscdi=true |