Finite representation of infinite query answers

We define here a formal notion of finite representation of infinite query answers in logic programs. We apply this notion to DatalognS programs may be infinite and consequently queries may have infinite answers. We present a method to finitely represent infinite least Herbrand models of DatalognS pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on database systems 1993-06, Vol.18 (2), p.181-223
Hauptverfasser: Chomicki, Jan, Imieliński, Tomasz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue 2
container_start_page 181
container_title ACM transactions on database systems
container_volume 18
creator Chomicki, Jan
Imieliński, Tomasz
description We define here a formal notion of finite representation of infinite query answers in logic programs. We apply this notion to DatalognS programs may be infinite and consequently queries may have infinite answers. We present a method to finitely represent infinite least Herbrand models of DatalognS program (and its underlying computational engine) can be forgotten. Given a query to be evaluated, it is easy to obtain from the relational specification finitely many answer substitutions that represent infinitely many answer substitutions to the query. The method involved is a combination of a simple, unificationless, computational mechanism (graph traversal, congruence closure, or term rewriting) and standard relational query evaluation methods. Second, a relational specification is effectively computable and its computation is no harder, in the sense of the complexity class, than answering yes-no queries. Our method is applicable to every range-restricted DatalognS program. We also show that for some very simple non-DatalognS logic programs, finite representations of query answers do not exist.
doi_str_mv 10.1145/151634.151635
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7049030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28924499</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-de7e05ca29184d5ec537e0d1f08330971dd309062058864297bccc2823fbd3ce3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKtHD94WEW_b5nM3OYpYFQpe9BzS2SxG2mzNbJH-e6Mpenph5pmH4SXkktEZY1LNmWKNkLPfUEdkwpRqa9lIeUwmVDS8VoapU3KG-EEpldq0EzJfhBhGXyW_TR59HN0YhlgNfRViX1afO5_2lYv45ROek5PerdFfHHJK3hYPr_dP9fLl8fn-blk70Zqx7nzrqQLHDdOyUx6UyIOO9VQLQU3Lui4HbThVWjeSm3YFAFxz0a86AV5MyXXxDjgGi5AfgXcYYvQw2pZKQwXN0G2BtmnIX-JoNwHBr9cu-mGHlmvDpTQmg3UBIQ2Iyfd2m8LGpb1l1P50Z0t3JVTmbw5ih-DWfXIRAv4dCd0oIXnGrgrmYPNvLIpvACl0GA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28924499</pqid></control><display><type>article</type><title>Finite representation of infinite query answers</title><source>ACM Digital Library Complete</source><creator>Chomicki, Jan ; Imieliński, Tomasz</creator><creatorcontrib>Chomicki, Jan ; Imieliński, Tomasz</creatorcontrib><description>We define here a formal notion of finite representation of infinite query answers in logic programs. We apply this notion to DatalognS programs may be infinite and consequently queries may have infinite answers. We present a method to finitely represent infinite least Herbrand models of DatalognS program (and its underlying computational engine) can be forgotten. Given a query to be evaluated, it is easy to obtain from the relational specification finitely many answer substitutions that represent infinitely many answer substitutions to the query. The method involved is a combination of a simple, unificationless, computational mechanism (graph traversal, congruence closure, or term rewriting) and standard relational query evaluation methods. Second, a relational specification is effectively computable and its computation is no harder, in the sense of the complexity class, than answering yes-no queries. Our method is applicable to every range-restricted DatalognS program. We also show that for some very simple non-DatalognS logic programs, finite representations of query answers do not exist.</description><identifier>ISSN: 0362-5915</identifier><identifier>EISSN: 1557-4644</identifier><identifier>DOI: 10.1145/151634.151635</identifier><identifier>CODEN: ATDSD3</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>990200 - Mathematics &amp; Computers ; Applied sciences ; Artificial intelligence ; Computability ; Computer science; control theory; systems ; Computing methodologies ; DATA BASE MANAGEMENT ; Data management systems ; DATA PROCESSING ; Database query languages (principles) ; Database theory ; Design and analysis of algorithms ; Exact sciences and technology ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; INFORMATION RETRIEVAL ; Information systems ; Information systems. Data bases ; Knowledge representation and reasoning ; Logic ; Machine learning ; Machine learning approaches ; MANAGEMENT ; Memory organisation. Data processing ; Models of computation ; PROCESSING ; Query languages ; Rule learning ; Software ; TASK SCHEDULING ; Theory and algorithms for application domains ; Theory of computation</subject><ispartof>ACM transactions on database systems, 1993-06, Vol.18 (2), p.181-223</ispartof><rights>ACM</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-de7e05ca29184d5ec537e0d1f08330971dd309062058864297bccc2823fbd3ce3</citedby><cites>FETCH-LOGICAL-a379t-de7e05ca29184d5ec537e0d1f08330971dd309062058864297bccc2823fbd3ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/151634.151635$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>230,314,776,780,881,2276,27903,27904,40175,75974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3865342$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7049030$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chomicki, Jan</creatorcontrib><creatorcontrib>Imieliński, Tomasz</creatorcontrib><title>Finite representation of infinite query answers</title><title>ACM transactions on database systems</title><addtitle>ACM TODS</addtitle><description>We define here a formal notion of finite representation of infinite query answers in logic programs. We apply this notion to DatalognS programs may be infinite and consequently queries may have infinite answers. We present a method to finitely represent infinite least Herbrand models of DatalognS program (and its underlying computational engine) can be forgotten. Given a query to be evaluated, it is easy to obtain from the relational specification finitely many answer substitutions that represent infinitely many answer substitutions to the query. The method involved is a combination of a simple, unificationless, computational mechanism (graph traversal, congruence closure, or term rewriting) and standard relational query evaluation methods. Second, a relational specification is effectively computable and its computation is no harder, in the sense of the complexity class, than answering yes-no queries. Our method is applicable to every range-restricted DatalognS program. We also show that for some very simple non-DatalognS logic programs, finite representations of query answers do not exist.</description><subject>990200 - Mathematics &amp; Computers</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computability</subject><subject>Computer science; control theory; systems</subject><subject>Computing methodologies</subject><subject>DATA BASE MANAGEMENT</subject><subject>Data management systems</subject><subject>DATA PROCESSING</subject><subject>Database query languages (principles)</subject><subject>Database theory</subject><subject>Design and analysis of algorithms</subject><subject>Exact sciences and technology</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>INFORMATION RETRIEVAL</subject><subject>Information systems</subject><subject>Information systems. Data bases</subject><subject>Knowledge representation and reasoning</subject><subject>Logic</subject><subject>Machine learning</subject><subject>Machine learning approaches</subject><subject>MANAGEMENT</subject><subject>Memory organisation. Data processing</subject><subject>Models of computation</subject><subject>PROCESSING</subject><subject>Query languages</subject><subject>Rule learning</subject><subject>Software</subject><subject>TASK SCHEDULING</subject><subject>Theory and algorithms for application domains</subject><subject>Theory of computation</subject><issn>0362-5915</issn><issn>1557-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKtHD94WEW_b5nM3OYpYFQpe9BzS2SxG2mzNbJH-e6Mpenph5pmH4SXkktEZY1LNmWKNkLPfUEdkwpRqa9lIeUwmVDS8VoapU3KG-EEpldq0EzJfhBhGXyW_TR59HN0YhlgNfRViX1afO5_2lYv45ROek5PerdFfHHJK3hYPr_dP9fLl8fn-blk70Zqx7nzrqQLHDdOyUx6UyIOO9VQLQU3Lui4HbThVWjeSm3YFAFxz0a86AV5MyXXxDjgGi5AfgXcYYvQw2pZKQwXN0G2BtmnIX-JoNwHBr9cu-mGHlmvDpTQmg3UBIQ2Iyfd2m8LGpb1l1P50Z0t3JVTmbw5ih-DWfXIRAv4dCd0oIXnGrgrmYPNvLIpvACl0GA</recordid><startdate>19930601</startdate><enddate>19930601</enddate><creator>Chomicki, Jan</creator><creator>Imieliński, Tomasz</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>19930601</creationdate><title>Finite representation of infinite query answers</title><author>Chomicki, Jan ; Imieliński, Tomasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-de7e05ca29184d5ec537e0d1f08330971dd309062058864297bccc2823fbd3ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>990200 - Mathematics &amp; Computers</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computability</topic><topic>Computer science; control theory; systems</topic><topic>Computing methodologies</topic><topic>DATA BASE MANAGEMENT</topic><topic>Data management systems</topic><topic>DATA PROCESSING</topic><topic>Database query languages (principles)</topic><topic>Database theory</topic><topic>Design and analysis of algorithms</topic><topic>Exact sciences and technology</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>INFORMATION RETRIEVAL</topic><topic>Information systems</topic><topic>Information systems. Data bases</topic><topic>Knowledge representation and reasoning</topic><topic>Logic</topic><topic>Machine learning</topic><topic>Machine learning approaches</topic><topic>MANAGEMENT</topic><topic>Memory organisation. Data processing</topic><topic>Models of computation</topic><topic>PROCESSING</topic><topic>Query languages</topic><topic>Rule learning</topic><topic>Software</topic><topic>TASK SCHEDULING</topic><topic>Theory and algorithms for application domains</topic><topic>Theory of computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chomicki, Jan</creatorcontrib><creatorcontrib>Imieliński, Tomasz</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>ACM transactions on database systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chomicki, Jan</au><au>Imieliński, Tomasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite representation of infinite query answers</atitle><jtitle>ACM transactions on database systems</jtitle><stitle>ACM TODS</stitle><date>1993-06-01</date><risdate>1993</risdate><volume>18</volume><issue>2</issue><spage>181</spage><epage>223</epage><pages>181-223</pages><issn>0362-5915</issn><eissn>1557-4644</eissn><coden>ATDSD3</coden><abstract>We define here a formal notion of finite representation of infinite query answers in logic programs. We apply this notion to DatalognS programs may be infinite and consequently queries may have infinite answers. We present a method to finitely represent infinite least Herbrand models of DatalognS program (and its underlying computational engine) can be forgotten. Given a query to be evaluated, it is easy to obtain from the relational specification finitely many answer substitutions that represent infinitely many answer substitutions to the query. The method involved is a combination of a simple, unificationless, computational mechanism (graph traversal, congruence closure, or term rewriting) and standard relational query evaluation methods. Second, a relational specification is effectively computable and its computation is no harder, in the sense of the complexity class, than answering yes-no queries. Our method is applicable to every range-restricted DatalognS program. We also show that for some very simple non-DatalognS logic programs, finite representations of query answers do not exist.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/151634.151635</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-5915
ispartof ACM transactions on database systems, 1993-06, Vol.18 (2), p.181-223
issn 0362-5915
1557-4644
language eng
recordid cdi_osti_scitechconnect_7049030
source ACM Digital Library Complete
subjects 990200 - Mathematics & Computers
Applied sciences
Artificial intelligence
Computability
Computer science
control theory
systems
Computing methodologies
DATA BASE MANAGEMENT
Data management systems
DATA PROCESSING
Database query languages (principles)
Database theory
Design and analysis of algorithms
Exact sciences and technology
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
INFORMATION RETRIEVAL
Information systems
Information systems. Data bases
Knowledge representation and reasoning
Logic
Machine learning
Machine learning approaches
MANAGEMENT
Memory organisation. Data processing
Models of computation
PROCESSING
Query languages
Rule learning
Software
TASK SCHEDULING
Theory and algorithms for application domains
Theory of computation
title Finite representation of infinite query answers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20representation%20of%20infinite%20query%20answers&rft.jtitle=ACM%20transactions%20on%20database%20systems&rft.au=Chomicki,%20Jan&rft.date=1993-06-01&rft.volume=18&rft.issue=2&rft.spage=181&rft.epage=223&rft.pages=181-223&rft.issn=0362-5915&rft.eissn=1557-4644&rft.coden=ATDSD3&rft_id=info:doi/10.1145/151634.151635&rft_dat=%3Cproquest_osti_%3E28924499%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28924499&rft_id=info:pmid/&rfr_iscdi=true