Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames

Insights into soot formation processes are gained from chemical sampling and thermocouple probing of co-flowing inverse diffusion flames (IDFs), with the oxidizer in the center. The transition from near-to slightly sooting flames and the effects of flame temperature, fuel concentration, and fuel str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 1992-09, Vol.90 (3), p.269,IN1,273-272,IN1,283
Hauptverfasser: Sidebotham, George W., Glassman, Irvin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 272,IN1,283
container_issue 3
container_start_page 269,IN1,273
container_title Combustion and flame
container_volume 90
creator Sidebotham, George W.
Glassman, Irvin
description Insights into soot formation processes are gained from chemical sampling and thermocouple probing of co-flowing inverse diffusion flames (IDFs), with the oxidizer in the center. The transition from near-to slightly sooting flames and the effects of flame temperature, fuel concentration, and fuel structure (using methane, ethene, propene and 1-butene) are investigated. The aromatic content of IDFS scales with the fuel's sooting tendency, and suggests that the formation of the aromatic ring is a controlling step in soot formation. In addition to the relatively well-established reactions involving C4 and C2 species, benzene may form directly from two C3 species for fuels that readily produce C3 species during pyrolysis and/or oxidative pyrolysis. The total concentration of growth species increases almost linearly with fuel concentration, but depends more weakly on flame temperature than would be expected if pure pyrolysis governed the intermediate hydrocarbon behavior.
doi_str_mv 10.1016/0010-2180(92)90088-7
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7029952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0010218092900887</els_id><sourcerecordid>25640540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-70383d552c642519ed28501c815eba48f7191ee6331c4d65f43f8352fc4bff113</originalsourceid><addsrcrecordid>eNp9kVtLHjEQhkOp0K_Wf-DFIiIW3HZy2sNNoUitBcEbex1idoKR3c1nJiv035t1xctCIJnJMzMv7zB2zOEbB958B-BQC97BeS--9gBdV7cf2I5r3dSiF_wj270jn9hnokcAaJWUOxavRjthlXHaY7J5SXhR-QXHinJa3BbbedhyLs4O51y4EOcKvUeXqSpPijFXPqZp-wnrecZEWA3B-4XWpF8H0Rd24O1IePR2H7K_V7_uLq_rm9vffy5_3tRO6SbXLchODloL1yiheY-D6DRw13GN91Z1vuU9R2yk5E4NjfZK-k5q4Z26955zechOtr6RcjDkQkb3UPTPRbJpQfS9FgU626B9ik8LUjZTIIfjaGeMCxmhGwVaQQHVBroUiRJ6s09hsumf4WDWFZjVX7P6a3phXldg2lJ2-tbfkrOjT3Z2gd5rtRJtq2XBfmwYFkOeA6ZVLxarh5BWuUMM_5_zAl5zml0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25640540</pqid></control><display><type>article</type><title>Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sidebotham, George W. ; Glassman, Irvin</creator><creatorcontrib>Sidebotham, George W. ; Glassman, Irvin</creatorcontrib><description>Insights into soot formation processes are gained from chemical sampling and thermocouple probing of co-flowing inverse diffusion flames (IDFs), with the oxidizer in the center. The transition from near-to slightly sooting flames and the effects of flame temperature, fuel concentration, and fuel structure (using methane, ethene, propene and 1-butene) are investigated. The aromatic content of IDFS scales with the fuel's sooting tendency, and suggests that the formation of the aromatic ring is a controlling step in soot formation. In addition to the relatively well-established reactions involving C4 and C2 species, benzene may form directly from two C3 species for fuels that readily produce C3 species during pyrolysis and/or oxidative pyrolysis. The total concentration of growth species increases almost linearly with fuel concentration, but depends more weakly on flame temperature than would be expected if pure pyrolysis governed the intermediate hydrocarbon behavior.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/0010-2180(92)90088-7</identifier><identifier>CODEN: CBFMAO</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>400102 - Chemical &amp; Spectral Procedures ; 400800 - Combustion, Pyrolysis, &amp; High-Temperature Chemistry ; 440500 - Thermal Instrumentation- (1990-) ; ALKANES ; ALKENES ; Applied sciences ; AROMATICS ; BENZENE ; BUTENES ; CHEMICAL REACTIONS ; CHEMISTRY ; Combustion of gaseous fuels ; Combustion. Flame ; CONCENTRATION RATIO ; DECOMPOSITION ; DIFFUSION ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; FLAMES ; FUELS ; HYDROCARBONS ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; MEASURING INSTRUMENTS ; METHANE ; ORGANIC COMPOUNDS ; OTHER INSTRUMENTATION ; OXIDIZERS ; PROPYLENE ; PYROLYSIS ; SAMPLING ; SOOT ; TEMPERATURE DEPENDENCE ; Theoretical studies. Data and constants. Metering ; THERMOCHEMICAL PROCESSES ; THERMOCOUPLES</subject><ispartof>Combustion and flame, 1992-09, Vol.90 (3), p.269,IN1,273-272,IN1,283</ispartof><rights>1992</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-70383d552c642519ed28501c815eba48f7191ee6331c4d65f43f8352fc4bff113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0010-2180(92)90088-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5427753$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7029952$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sidebotham, George W.</creatorcontrib><creatorcontrib>Glassman, Irvin</creatorcontrib><title>Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames</title><title>Combustion and flame</title><description>Insights into soot formation processes are gained from chemical sampling and thermocouple probing of co-flowing inverse diffusion flames (IDFs), with the oxidizer in the center. The transition from near-to slightly sooting flames and the effects of flame temperature, fuel concentration, and fuel structure (using methane, ethene, propene and 1-butene) are investigated. The aromatic content of IDFS scales with the fuel's sooting tendency, and suggests that the formation of the aromatic ring is a controlling step in soot formation. In addition to the relatively well-established reactions involving C4 and C2 species, benzene may form directly from two C3 species for fuels that readily produce C3 species during pyrolysis and/or oxidative pyrolysis. The total concentration of growth species increases almost linearly with fuel concentration, but depends more weakly on flame temperature than would be expected if pure pyrolysis governed the intermediate hydrocarbon behavior.</description><subject>400102 - Chemical &amp; Spectral Procedures</subject><subject>400800 - Combustion, Pyrolysis, &amp; High-Temperature Chemistry</subject><subject>440500 - Thermal Instrumentation- (1990-)</subject><subject>ALKANES</subject><subject>ALKENES</subject><subject>Applied sciences</subject><subject>AROMATICS</subject><subject>BENZENE</subject><subject>BUTENES</subject><subject>CHEMICAL REACTIONS</subject><subject>CHEMISTRY</subject><subject>Combustion of gaseous fuels</subject><subject>Combustion. Flame</subject><subject>CONCENTRATION RATIO</subject><subject>DECOMPOSITION</subject><subject>DIFFUSION</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>FLAMES</subject><subject>FUELS</subject><subject>HYDROCARBONS</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>MEASURING INSTRUMENTS</subject><subject>METHANE</subject><subject>ORGANIC COMPOUNDS</subject><subject>OTHER INSTRUMENTATION</subject><subject>OXIDIZERS</subject><subject>PROPYLENE</subject><subject>PYROLYSIS</subject><subject>SAMPLING</subject><subject>SOOT</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>THERMOCHEMICAL PROCESSES</subject><subject>THERMOCOUPLES</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kVtLHjEQhkOp0K_Wf-DFIiIW3HZy2sNNoUitBcEbex1idoKR3c1nJiv035t1xctCIJnJMzMv7zB2zOEbB958B-BQC97BeS--9gBdV7cf2I5r3dSiF_wj270jn9hnokcAaJWUOxavRjthlXHaY7J5SXhR-QXHinJa3BbbedhyLs4O51y4EOcKvUeXqSpPijFXPqZp-wnrecZEWA3B-4XWpF8H0Rd24O1IePR2H7K_V7_uLq_rm9vffy5_3tRO6SbXLchODloL1yiheY-D6DRw13GN91Z1vuU9R2yk5E4NjfZK-k5q4Z26955zechOtr6RcjDkQkb3UPTPRbJpQfS9FgU626B9ik8LUjZTIIfjaGeMCxmhGwVaQQHVBroUiRJ6s09hsumf4WDWFZjVX7P6a3phXldg2lJ2-tbfkrOjT3Z2gd5rtRJtq2XBfmwYFkOeA6ZVLxarh5BWuUMM_5_zAl5zml0</recordid><startdate>19920901</startdate><enddate>19920901</enddate><creator>Sidebotham, George W.</creator><creator>Glassman, Irvin</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19920901</creationdate><title>Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames</title><author>Sidebotham, George W. ; Glassman, Irvin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-70383d552c642519ed28501c815eba48f7191ee6331c4d65f43f8352fc4bff113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>400102 - Chemical &amp; Spectral Procedures</topic><topic>400800 - Combustion, Pyrolysis, &amp; High-Temperature Chemistry</topic><topic>440500 - Thermal Instrumentation- (1990-)</topic><topic>ALKANES</topic><topic>ALKENES</topic><topic>Applied sciences</topic><topic>AROMATICS</topic><topic>BENZENE</topic><topic>BUTENES</topic><topic>CHEMICAL REACTIONS</topic><topic>CHEMISTRY</topic><topic>Combustion of gaseous fuels</topic><topic>Combustion. Flame</topic><topic>CONCENTRATION RATIO</topic><topic>DECOMPOSITION</topic><topic>DIFFUSION</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>FLAMES</topic><topic>FUELS</topic><topic>HYDROCARBONS</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>MEASURING INSTRUMENTS</topic><topic>METHANE</topic><topic>ORGANIC COMPOUNDS</topic><topic>OTHER INSTRUMENTATION</topic><topic>OXIDIZERS</topic><topic>PROPYLENE</topic><topic>PYROLYSIS</topic><topic>SAMPLING</topic><topic>SOOT</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>THERMOCHEMICAL PROCESSES</topic><topic>THERMOCOUPLES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidebotham, George W.</creatorcontrib><creatorcontrib>Glassman, Irvin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidebotham, George W.</au><au>Glassman, Irvin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames</atitle><jtitle>Combustion and flame</jtitle><date>1992-09-01</date><risdate>1992</risdate><volume>90</volume><issue>3</issue><spage>269,IN1,273</spage><epage>272,IN1,283</epage><pages>269,IN1,273-272,IN1,283</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><coden>CBFMAO</coden><abstract>Insights into soot formation processes are gained from chemical sampling and thermocouple probing of co-flowing inverse diffusion flames (IDFs), with the oxidizer in the center. The transition from near-to slightly sooting flames and the effects of flame temperature, fuel concentration, and fuel structure (using methane, ethene, propene and 1-butene) are investigated. The aromatic content of IDFS scales with the fuel's sooting tendency, and suggests that the formation of the aromatic ring is a controlling step in soot formation. In addition to the relatively well-established reactions involving C4 and C2 species, benzene may form directly from two C3 species for fuels that readily produce C3 species during pyrolysis and/or oxidative pyrolysis. The total concentration of growth species increases almost linearly with fuel concentration, but depends more weakly on flame temperature than would be expected if pure pyrolysis governed the intermediate hydrocarbon behavior.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/0010-2180(92)90088-7</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 1992-09, Vol.90 (3), p.269,IN1,273-272,IN1,283
issn 0010-2180
1556-2921
language eng
recordid cdi_osti_scitechconnect_7029952
source ScienceDirect Journals (5 years ago - present)
subjects 400102 - Chemical & Spectral Procedures
400800 - Combustion, Pyrolysis, & High-Temperature Chemistry
440500 - Thermal Instrumentation- (1990-)
ALKANES
ALKENES
Applied sciences
AROMATICS
BENZENE
BUTENES
CHEMICAL REACTIONS
CHEMISTRY
Combustion of gaseous fuels
Combustion. Flame
CONCENTRATION RATIO
DECOMPOSITION
DIFFUSION
Energy
Energy. Thermal use of fuels
Exact sciences and technology
FLAMES
FUELS
HYDROCARBONS
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
MEASURING INSTRUMENTS
METHANE
ORGANIC COMPOUNDS
OTHER INSTRUMENTATION
OXIDIZERS
PROPYLENE
PYROLYSIS
SAMPLING
SOOT
TEMPERATURE DEPENDENCE
Theoretical studies. Data and constants. Metering
THERMOCHEMICAL PROCESSES
THERMOCOUPLES
title Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flame%20temperature,%20fuel%20structure,%20and%20fuel%20concentration%20effects%20on%20soot%20formation%20in%20inverse%20diffusion%20flames&rft.jtitle=Combustion%20and%20flame&rft.au=Sidebotham,%20George%20W.&rft.date=1992-09-01&rft.volume=90&rft.issue=3&rft.spage=269,IN1,273&rft.epage=272,IN1,283&rft.pages=269,IN1,273-272,IN1,283&rft.issn=0010-2180&rft.eissn=1556-2921&rft.coden=CBFMAO&rft_id=info:doi/10.1016/0010-2180(92)90088-7&rft_dat=%3Cproquest_osti_%3E25640540%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25640540&rft_id=info:pmid/&rft_els_id=0010218092900887&rfr_iscdi=true