Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames
Insights into soot formation processes are gained from chemical sampling and thermocouple probing of co-flowing inverse diffusion flames (IDFs), with the oxidizer in the center. The transition from near-to slightly sooting flames and the effects of flame temperature, fuel concentration, and fuel str...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 1992-09, Vol.90 (3), p.269,IN1,273-272,IN1,283 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 272,IN1,283 |
---|---|
container_issue | 3 |
container_start_page | 269,IN1,273 |
container_title | Combustion and flame |
container_volume | 90 |
creator | Sidebotham, George W. Glassman, Irvin |
description | Insights into soot formation processes are gained from chemical sampling and thermocouple probing of co-flowing inverse diffusion flames (IDFs), with the oxidizer in the center. The transition from near-to slightly sooting flames and the effects of flame temperature, fuel concentration, and fuel structure (using methane, ethene, propene and 1-butene) are investigated. The aromatic content of IDFS scales with the fuel's sooting tendency, and suggests that the formation of the aromatic ring is a controlling step in soot formation. In addition to the relatively well-established reactions involving C4 and C2 species, benzene may form directly from two C3 species for fuels that readily produce C3 species during pyrolysis and/or oxidative pyrolysis. The total concentration of growth species increases almost linearly with fuel concentration, but depends more weakly on flame temperature than would be expected if pure pyrolysis governed the intermediate hydrocarbon behavior. |
doi_str_mv | 10.1016/0010-2180(92)90088-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7029952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0010218092900887</els_id><sourcerecordid>25640540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-70383d552c642519ed28501c815eba48f7191ee6331c4d65f43f8352fc4bff113</originalsourceid><addsrcrecordid>eNp9kVtLHjEQhkOp0K_Wf-DFIiIW3HZy2sNNoUitBcEbex1idoKR3c1nJiv035t1xctCIJnJMzMv7zB2zOEbB958B-BQC97BeS--9gBdV7cf2I5r3dSiF_wj270jn9hnokcAaJWUOxavRjthlXHaY7J5SXhR-QXHinJa3BbbedhyLs4O51y4EOcKvUeXqSpPijFXPqZp-wnrecZEWA3B-4XWpF8H0Rd24O1IePR2H7K_V7_uLq_rm9vffy5_3tRO6SbXLchODloL1yiheY-D6DRw13GN91Z1vuU9R2yk5E4NjfZK-k5q4Z26955zechOtr6RcjDkQkb3UPTPRbJpQfS9FgU626B9ik8LUjZTIIfjaGeMCxmhGwVaQQHVBroUiRJ6s09hsumf4WDWFZjVX7P6a3phXldg2lJ2-tbfkrOjT3Z2gd5rtRJtq2XBfmwYFkOeA6ZVLxarh5BWuUMM_5_zAl5zml0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25640540</pqid></control><display><type>article</type><title>Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sidebotham, George W. ; Glassman, Irvin</creator><creatorcontrib>Sidebotham, George W. ; Glassman, Irvin</creatorcontrib><description>Insights into soot formation processes are gained from chemical sampling and thermocouple probing of co-flowing inverse diffusion flames (IDFs), with the oxidizer in the center. The transition from near-to slightly sooting flames and the effects of flame temperature, fuel concentration, and fuel structure (using methane, ethene, propene and 1-butene) are investigated. The aromatic content of IDFS scales with the fuel's sooting tendency, and suggests that the formation of the aromatic ring is a controlling step in soot formation. In addition to the relatively well-established reactions involving C4 and C2 species, benzene may form directly from two C3 species for fuels that readily produce C3 species during pyrolysis and/or oxidative pyrolysis. The total concentration of growth species increases almost linearly with fuel concentration, but depends more weakly on flame temperature than would be expected if pure pyrolysis governed the intermediate hydrocarbon behavior.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/0010-2180(92)90088-7</identifier><identifier>CODEN: CBFMAO</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>400102 - Chemical & Spectral Procedures ; 400800 - Combustion, Pyrolysis, & High-Temperature Chemistry ; 440500 - Thermal Instrumentation- (1990-) ; ALKANES ; ALKENES ; Applied sciences ; AROMATICS ; BENZENE ; BUTENES ; CHEMICAL REACTIONS ; CHEMISTRY ; Combustion of gaseous fuels ; Combustion. Flame ; CONCENTRATION RATIO ; DECOMPOSITION ; DIFFUSION ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; FLAMES ; FUELS ; HYDROCARBONS ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; MEASURING INSTRUMENTS ; METHANE ; ORGANIC COMPOUNDS ; OTHER INSTRUMENTATION ; OXIDIZERS ; PROPYLENE ; PYROLYSIS ; SAMPLING ; SOOT ; TEMPERATURE DEPENDENCE ; Theoretical studies. Data and constants. Metering ; THERMOCHEMICAL PROCESSES ; THERMOCOUPLES</subject><ispartof>Combustion and flame, 1992-09, Vol.90 (3), p.269,IN1,273-272,IN1,283</ispartof><rights>1992</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-70383d552c642519ed28501c815eba48f7191ee6331c4d65f43f8352fc4bff113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0010-2180(92)90088-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5427753$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7029952$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sidebotham, George W.</creatorcontrib><creatorcontrib>Glassman, Irvin</creatorcontrib><title>Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames</title><title>Combustion and flame</title><description>Insights into soot formation processes are gained from chemical sampling and thermocouple probing of co-flowing inverse diffusion flames (IDFs), with the oxidizer in the center. The transition from near-to slightly sooting flames and the effects of flame temperature, fuel concentration, and fuel structure (using methane, ethene, propene and 1-butene) are investigated. The aromatic content of IDFS scales with the fuel's sooting tendency, and suggests that the formation of the aromatic ring is a controlling step in soot formation. In addition to the relatively well-established reactions involving C4 and C2 species, benzene may form directly from two C3 species for fuels that readily produce C3 species during pyrolysis and/or oxidative pyrolysis. The total concentration of growth species increases almost linearly with fuel concentration, but depends more weakly on flame temperature than would be expected if pure pyrolysis governed the intermediate hydrocarbon behavior.</description><subject>400102 - Chemical & Spectral Procedures</subject><subject>400800 - Combustion, Pyrolysis, & High-Temperature Chemistry</subject><subject>440500 - Thermal Instrumentation- (1990-)</subject><subject>ALKANES</subject><subject>ALKENES</subject><subject>Applied sciences</subject><subject>AROMATICS</subject><subject>BENZENE</subject><subject>BUTENES</subject><subject>CHEMICAL REACTIONS</subject><subject>CHEMISTRY</subject><subject>Combustion of gaseous fuels</subject><subject>Combustion. Flame</subject><subject>CONCENTRATION RATIO</subject><subject>DECOMPOSITION</subject><subject>DIFFUSION</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>FLAMES</subject><subject>FUELS</subject><subject>HYDROCARBONS</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>MEASURING INSTRUMENTS</subject><subject>METHANE</subject><subject>ORGANIC COMPOUNDS</subject><subject>OTHER INSTRUMENTATION</subject><subject>OXIDIZERS</subject><subject>PROPYLENE</subject><subject>PYROLYSIS</subject><subject>SAMPLING</subject><subject>SOOT</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>THERMOCHEMICAL PROCESSES</subject><subject>THERMOCOUPLES</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kVtLHjEQhkOp0K_Wf-DFIiIW3HZy2sNNoUitBcEbex1idoKR3c1nJiv035t1xctCIJnJMzMv7zB2zOEbB958B-BQC97BeS--9gBdV7cf2I5r3dSiF_wj270jn9hnokcAaJWUOxavRjthlXHaY7J5SXhR-QXHinJa3BbbedhyLs4O51y4EOcKvUeXqSpPijFXPqZp-wnrecZEWA3B-4XWpF8H0Rd24O1IePR2H7K_V7_uLq_rm9vffy5_3tRO6SbXLchODloL1yiheY-D6DRw13GN91Z1vuU9R2yk5E4NjfZK-k5q4Z26955zechOtr6RcjDkQkb3UPTPRbJpQfS9FgU626B9ik8LUjZTIIfjaGeMCxmhGwVaQQHVBroUiRJ6s09hsumf4WDWFZjVX7P6a3phXldg2lJ2-tbfkrOjT3Z2gd5rtRJtq2XBfmwYFkOeA6ZVLxarh5BWuUMM_5_zAl5zml0</recordid><startdate>19920901</startdate><enddate>19920901</enddate><creator>Sidebotham, George W.</creator><creator>Glassman, Irvin</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19920901</creationdate><title>Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames</title><author>Sidebotham, George W. ; Glassman, Irvin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-70383d552c642519ed28501c815eba48f7191ee6331c4d65f43f8352fc4bff113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>400102 - Chemical & Spectral Procedures</topic><topic>400800 - Combustion, Pyrolysis, & High-Temperature Chemistry</topic><topic>440500 - Thermal Instrumentation- (1990-)</topic><topic>ALKANES</topic><topic>ALKENES</topic><topic>Applied sciences</topic><topic>AROMATICS</topic><topic>BENZENE</topic><topic>BUTENES</topic><topic>CHEMICAL REACTIONS</topic><topic>CHEMISTRY</topic><topic>Combustion of gaseous fuels</topic><topic>Combustion. Flame</topic><topic>CONCENTRATION RATIO</topic><topic>DECOMPOSITION</topic><topic>DIFFUSION</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>FLAMES</topic><topic>FUELS</topic><topic>HYDROCARBONS</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>MEASURING INSTRUMENTS</topic><topic>METHANE</topic><topic>ORGANIC COMPOUNDS</topic><topic>OTHER INSTRUMENTATION</topic><topic>OXIDIZERS</topic><topic>PROPYLENE</topic><topic>PYROLYSIS</topic><topic>SAMPLING</topic><topic>SOOT</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>THERMOCHEMICAL PROCESSES</topic><topic>THERMOCOUPLES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidebotham, George W.</creatorcontrib><creatorcontrib>Glassman, Irvin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidebotham, George W.</au><au>Glassman, Irvin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames</atitle><jtitle>Combustion and flame</jtitle><date>1992-09-01</date><risdate>1992</risdate><volume>90</volume><issue>3</issue><spage>269,IN1,273</spage><epage>272,IN1,283</epage><pages>269,IN1,273-272,IN1,283</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><coden>CBFMAO</coden><abstract>Insights into soot formation processes are gained from chemical sampling and thermocouple probing of co-flowing inverse diffusion flames (IDFs), with the oxidizer in the center. The transition from near-to slightly sooting flames and the effects of flame temperature, fuel concentration, and fuel structure (using methane, ethene, propene and 1-butene) are investigated. The aromatic content of IDFS scales with the fuel's sooting tendency, and suggests that the formation of the aromatic ring is a controlling step in soot formation. In addition to the relatively well-established reactions involving C4 and C2 species, benzene may form directly from two C3 species for fuels that readily produce C3 species during pyrolysis and/or oxidative pyrolysis. The total concentration of growth species increases almost linearly with fuel concentration, but depends more weakly on flame temperature than would be expected if pure pyrolysis governed the intermediate hydrocarbon behavior.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/0010-2180(92)90088-7</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 1992-09, Vol.90 (3), p.269,IN1,273-272,IN1,283 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_osti_scitechconnect_7029952 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | 400102 - Chemical & Spectral Procedures 400800 - Combustion, Pyrolysis, & High-Temperature Chemistry 440500 - Thermal Instrumentation- (1990-) ALKANES ALKENES Applied sciences AROMATICS BENZENE BUTENES CHEMICAL REACTIONS CHEMISTRY Combustion of gaseous fuels Combustion. Flame CONCENTRATION RATIO DECOMPOSITION DIFFUSION Energy Energy. Thermal use of fuels Exact sciences and technology FLAMES FUELS HYDROCARBONS INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY MEASURING INSTRUMENTS METHANE ORGANIC COMPOUNDS OTHER INSTRUMENTATION OXIDIZERS PROPYLENE PYROLYSIS SAMPLING SOOT TEMPERATURE DEPENDENCE Theoretical studies. Data and constants. Metering THERMOCHEMICAL PROCESSES THERMOCOUPLES |
title | Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flame%20temperature,%20fuel%20structure,%20and%20fuel%20concentration%20effects%20on%20soot%20formation%20in%20inverse%20diffusion%20flames&rft.jtitle=Combustion%20and%20flame&rft.au=Sidebotham,%20George%20W.&rft.date=1992-09-01&rft.volume=90&rft.issue=3&rft.spage=269,IN1,273&rft.epage=272,IN1,283&rft.pages=269,IN1,273-272,IN1,283&rft.issn=0010-2180&rft.eissn=1556-2921&rft.coden=CBFMAO&rft_id=info:doi/10.1016/0010-2180(92)90088-7&rft_dat=%3Cproquest_osti_%3E25640540%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25640540&rft_id=info:pmid/&rft_els_id=0010218092900887&rfr_iscdi=true |