Optimization of composition and structure of metal-hydride electrodes

This paper focuses on investigations to improve the capacity and cycle-life of a Ni/MH[sub x] battery by optimization of the composition (active material and additive) and structure of the metal hydride electrode. Teflonized carbons, Vulcan-XC-72, Notrit-NK, and acetylene black (XC-35) were evaluate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 1994-07, Vol.141 (7), p.1747-1750
Hauptverfasser: PETROV, K, ROSTAMI, A. A, VISINTIN, A, SRINIVASAN, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1750
container_issue 7
container_start_page 1747
container_title Journal of the Electrochemical Society
container_volume 141
creator PETROV, K
ROSTAMI, A. A
VISINTIN, A
SRINIVASAN, S
description This paper focuses on investigations to improve the capacity and cycle-life of a Ni/MH[sub x] battery by optimization of the composition (active material and additive) and structure of the metal hydride electrode. Teflonized carbons, Vulcan-XC-72, Notrit-NK, and acetylene black (XC-35) were evaluated as additive materials for the AB[sub 2] and AB[sub 5]-type alloys. Experiments were conducted to determine the optimum (1) amount of hydride material in the electrode, (2) ratio of the amount of hydride material to that of electronically conducting material (carbon or acetylene black), and (3) percentage of Teflon in the metal hydride electrode. The discharge capacity and cycle life depended on both the type and amount of the additive material. The Teflonized carbon additive increased the stability of the electrode over that of an electrode with copper powder as the additive. The increase in stability and cycle life is attributed to the flexible, electronically conducting three-dimensional carbon-Teflon network which permits its intimate and stable contact with the active alloy particles. The additive Vulcan-XC-72 enhances the capacity of the electrode above that of an electrode with acetylene black or copper. The behavior of the electrodes, in respect to the effect of the additives, were similar with the AB[sub 2] and AB[sub 5] alloys as active materials.
doi_str_mv 10.1149/1.2054998
format Article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7023924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4253260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f9fcfc5b26b6ff076ee0f0e4ee59c2a059ded41774a50f377ee757f73fa57b8d3</originalsourceid><addsrcrecordid>eNo9kE9LAzEUxIMoWKsHv8EiXjxszdskm-Yopf6BQi96DtnsC43sbpYkPdRP79YWT4_h_WYYhpB7oAsArp5hUVHBlVpekBkoLkoJAJdkRimwktcCrslNSt-ThCWXM7Lejtn3_sdkH4YiuMKGfgzJ_0kztEXKcW_zPuLx2WM2Xbk7tNG3WGCHNsfQYrolV850Ce_Od06-Xtefq_dys337WL1sSstA5dIpZ50VTVU3tXNU1ojUUeSIQtnKUKFabDlIyY2gjkmJKIV0kjkjZLNs2Zw8nHJDyl4n6zPanQ3DMBXRklZMVXyCnk6QjSGliE6P0fcmHjRQfRxJgz6PNLGPJ3Y0yZrORTNYn_4NvBKsqin7BeRiZuk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of composition and structure of metal-hydride electrodes</title><source>IOP Publishing Journals</source><creator>PETROV, K ; ROSTAMI, A. A ; VISINTIN, A ; SRINIVASAN, S</creator><creatorcontrib>PETROV, K ; ROSTAMI, A. A ; VISINTIN, A ; SRINIVASAN, S</creatorcontrib><description>This paper focuses on investigations to improve the capacity and cycle-life of a Ni/MH[sub x] battery by optimization of the composition (active material and additive) and structure of the metal hydride electrode. Teflonized carbons, Vulcan-XC-72, Notrit-NK, and acetylene black (XC-35) were evaluated as additive materials for the AB[sub 2] and AB[sub 5]-type alloys. Experiments were conducted to determine the optimum (1) amount of hydride material in the electrode, (2) ratio of the amount of hydride material to that of electronically conducting material (carbon or acetylene black), and (3) percentage of Teflon in the metal hydride electrode. The discharge capacity and cycle life depended on both the type and amount of the additive material. The Teflonized carbon additive increased the stability of the electrode over that of an electrode with copper powder as the additive. The increase in stability and cycle life is attributed to the flexible, electronically conducting three-dimensional carbon-Teflon network which permits its intimate and stable contact with the active alloy particles. The additive Vulcan-XC-72 enhances the capacity of the electrode above that of an electrode with acetylene black or copper. The behavior of the electrodes, in respect to the effect of the additives, were similar with the AB[sub 2] and AB[sub 5] alloys as active materials.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1.2054998</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>Pennington, NJ: Electrochemical Society</publisher><subject>250902 - Energy Storage- Batteries- Performance &amp; Testing ; 250903 - Energy Storage- Batteries- Materials, Components, &amp; Auxiliaries ; ADDITIVES ; ALKALI METAL COMPOUNDS ; ALLOYS ; CARBONACEOUS MATERIALS ; CHEMICAL COMPOSITION ; Chemistry ; CHROMIUM ALLOYS ; COBALT ADDITIONS ; COBALT ALLOYS ; ELECTRIC BATTERIES ; ELECTROCHEMICAL CELLS ; Electrochemistry ; ELECTRODES ; Electrodes: preparations and properties ; ELEMENTS ; ENERGY STORAGE ; Exact sciences and technology ; General and physical chemistry ; HYDROGEN COMPOUNDS ; HYDROXIDES ; INTERMETALLIC COMPOUNDS ; LANTHANUM ALLOYS ; LIFETIME ; MATERIALS ; METAL-NONMETAL BATTERIES ; METALS ; MORPHOLOGY ; NEODYMIUM ADDITIONS ; NEODYMIUM ALLOYS ; NICKEL ; NICKEL ALLOYS ; NICKEL BASE ALLOYS ; OPTIMIZATION ; Other electrodes ; OXYGEN COMPOUNDS ; POTASSIUM COMPOUNDS ; POTASSIUM HYDROXIDES ; RARE EARTH ADDITIONS ; RARE EARTH ALLOYS ; SERVICE LIFE ; TIN ADDITIONS ; TIN ALLOYS ; TITANIUM ALLOYS ; TRANSITION ELEMENTS ; VANADIUM ALLOYS ; VOLTAGE DROP ; ZIRCONIUM ALLOYS</subject><ispartof>Journal of the Electrochemical Society, 1994-07, Vol.141 (7), p.1747-1750</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f9fcfc5b26b6ff076ee0f0e4ee59c2a059ded41774a50f377ee757f73fa57b8d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4253260$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7023924$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>PETROV, K</creatorcontrib><creatorcontrib>ROSTAMI, A. A</creatorcontrib><creatorcontrib>VISINTIN, A</creatorcontrib><creatorcontrib>SRINIVASAN, S</creatorcontrib><title>Optimization of composition and structure of metal-hydride electrodes</title><title>Journal of the Electrochemical Society</title><description>This paper focuses on investigations to improve the capacity and cycle-life of a Ni/MH[sub x] battery by optimization of the composition (active material and additive) and structure of the metal hydride electrode. Teflonized carbons, Vulcan-XC-72, Notrit-NK, and acetylene black (XC-35) were evaluated as additive materials for the AB[sub 2] and AB[sub 5]-type alloys. Experiments were conducted to determine the optimum (1) amount of hydride material in the electrode, (2) ratio of the amount of hydride material to that of electronically conducting material (carbon or acetylene black), and (3) percentage of Teflon in the metal hydride electrode. The discharge capacity and cycle life depended on both the type and amount of the additive material. The Teflonized carbon additive increased the stability of the electrode over that of an electrode with copper powder as the additive. The increase in stability and cycle life is attributed to the flexible, electronically conducting three-dimensional carbon-Teflon network which permits its intimate and stable contact with the active alloy particles. The additive Vulcan-XC-72 enhances the capacity of the electrode above that of an electrode with acetylene black or copper. The behavior of the electrodes, in respect to the effect of the additives, were similar with the AB[sub 2] and AB[sub 5] alloys as active materials.</description><subject>250902 - Energy Storage- Batteries- Performance &amp; Testing</subject><subject>250903 - Energy Storage- Batteries- Materials, Components, &amp; Auxiliaries</subject><subject>ADDITIVES</subject><subject>ALKALI METAL COMPOUNDS</subject><subject>ALLOYS</subject><subject>CARBONACEOUS MATERIALS</subject><subject>CHEMICAL COMPOSITION</subject><subject>Chemistry</subject><subject>CHROMIUM ALLOYS</subject><subject>COBALT ADDITIONS</subject><subject>COBALT ALLOYS</subject><subject>ELECTRIC BATTERIES</subject><subject>ELECTROCHEMICAL CELLS</subject><subject>Electrochemistry</subject><subject>ELECTRODES</subject><subject>Electrodes: preparations and properties</subject><subject>ELEMENTS</subject><subject>ENERGY STORAGE</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>HYDROGEN COMPOUNDS</subject><subject>HYDROXIDES</subject><subject>INTERMETALLIC COMPOUNDS</subject><subject>LANTHANUM ALLOYS</subject><subject>LIFETIME</subject><subject>MATERIALS</subject><subject>METAL-NONMETAL BATTERIES</subject><subject>METALS</subject><subject>MORPHOLOGY</subject><subject>NEODYMIUM ADDITIONS</subject><subject>NEODYMIUM ALLOYS</subject><subject>NICKEL</subject><subject>NICKEL ALLOYS</subject><subject>NICKEL BASE ALLOYS</subject><subject>OPTIMIZATION</subject><subject>Other electrodes</subject><subject>OXYGEN COMPOUNDS</subject><subject>POTASSIUM COMPOUNDS</subject><subject>POTASSIUM HYDROXIDES</subject><subject>RARE EARTH ADDITIONS</subject><subject>RARE EARTH ALLOYS</subject><subject>SERVICE LIFE</subject><subject>TIN ADDITIONS</subject><subject>TIN ALLOYS</subject><subject>TITANIUM ALLOYS</subject><subject>TRANSITION ELEMENTS</subject><subject>VANADIUM ALLOYS</subject><subject>VOLTAGE DROP</subject><subject>ZIRCONIUM ALLOYS</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEUxIMoWKsHv8EiXjxszdskm-Yopf6BQi96DtnsC43sbpYkPdRP79YWT4_h_WYYhpB7oAsArp5hUVHBlVpekBkoLkoJAJdkRimwktcCrslNSt-ThCWXM7Lejtn3_sdkH4YiuMKGfgzJ_0kztEXKcW_zPuLx2WM2Xbk7tNG3WGCHNsfQYrolV850Ce_Od06-Xtefq_dys337WL1sSstA5dIpZ50VTVU3tXNU1ojUUeSIQtnKUKFabDlIyY2gjkmJKIV0kjkjZLNs2Zw8nHJDyl4n6zPanQ3DMBXRklZMVXyCnk6QjSGliE6P0fcmHjRQfRxJgz6PNLGPJ3Y0yZrORTNYn_4NvBKsqin7BeRiZuk</recordid><startdate>19940701</startdate><enddate>19940701</enddate><creator>PETROV, K</creator><creator>ROSTAMI, A. A</creator><creator>VISINTIN, A</creator><creator>SRINIVASAN, S</creator><general>Electrochemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19940701</creationdate><title>Optimization of composition and structure of metal-hydride electrodes</title><author>PETROV, K ; ROSTAMI, A. A ; VISINTIN, A ; SRINIVASAN, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f9fcfc5b26b6ff076ee0f0e4ee59c2a059ded41774a50f377ee757f73fa57b8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>250902 - Energy Storage- Batteries- Performance &amp; Testing</topic><topic>250903 - Energy Storage- Batteries- Materials, Components, &amp; Auxiliaries</topic><topic>ADDITIVES</topic><topic>ALKALI METAL COMPOUNDS</topic><topic>ALLOYS</topic><topic>CARBONACEOUS MATERIALS</topic><topic>CHEMICAL COMPOSITION</topic><topic>Chemistry</topic><topic>CHROMIUM ALLOYS</topic><topic>COBALT ADDITIONS</topic><topic>COBALT ALLOYS</topic><topic>ELECTRIC BATTERIES</topic><topic>ELECTROCHEMICAL CELLS</topic><topic>Electrochemistry</topic><topic>ELECTRODES</topic><topic>Electrodes: preparations and properties</topic><topic>ELEMENTS</topic><topic>ENERGY STORAGE</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>HYDROGEN COMPOUNDS</topic><topic>HYDROXIDES</topic><topic>INTERMETALLIC COMPOUNDS</topic><topic>LANTHANUM ALLOYS</topic><topic>LIFETIME</topic><topic>MATERIALS</topic><topic>METAL-NONMETAL BATTERIES</topic><topic>METALS</topic><topic>MORPHOLOGY</topic><topic>NEODYMIUM ADDITIONS</topic><topic>NEODYMIUM ALLOYS</topic><topic>NICKEL</topic><topic>NICKEL ALLOYS</topic><topic>NICKEL BASE ALLOYS</topic><topic>OPTIMIZATION</topic><topic>Other electrodes</topic><topic>OXYGEN COMPOUNDS</topic><topic>POTASSIUM COMPOUNDS</topic><topic>POTASSIUM HYDROXIDES</topic><topic>RARE EARTH ADDITIONS</topic><topic>RARE EARTH ALLOYS</topic><topic>SERVICE LIFE</topic><topic>TIN ADDITIONS</topic><topic>TIN ALLOYS</topic><topic>TITANIUM ALLOYS</topic><topic>TRANSITION ELEMENTS</topic><topic>VANADIUM ALLOYS</topic><topic>VOLTAGE DROP</topic><topic>ZIRCONIUM ALLOYS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PETROV, K</creatorcontrib><creatorcontrib>ROSTAMI, A. A</creatorcontrib><creatorcontrib>VISINTIN, A</creatorcontrib><creatorcontrib>SRINIVASAN, S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PETROV, K</au><au>ROSTAMI, A. A</au><au>VISINTIN, A</au><au>SRINIVASAN, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of composition and structure of metal-hydride electrodes</atitle><jtitle>Journal of the Electrochemical Society</jtitle><date>1994-07-01</date><risdate>1994</risdate><volume>141</volume><issue>7</issue><spage>1747</spage><epage>1750</epage><pages>1747-1750</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>This paper focuses on investigations to improve the capacity and cycle-life of a Ni/MH[sub x] battery by optimization of the composition (active material and additive) and structure of the metal hydride electrode. Teflonized carbons, Vulcan-XC-72, Notrit-NK, and acetylene black (XC-35) were evaluated as additive materials for the AB[sub 2] and AB[sub 5]-type alloys. Experiments were conducted to determine the optimum (1) amount of hydride material in the electrode, (2) ratio of the amount of hydride material to that of electronically conducting material (carbon or acetylene black), and (3) percentage of Teflon in the metal hydride electrode. The discharge capacity and cycle life depended on both the type and amount of the additive material. The Teflonized carbon additive increased the stability of the electrode over that of an electrode with copper powder as the additive. The increase in stability and cycle life is attributed to the flexible, electronically conducting three-dimensional carbon-Teflon network which permits its intimate and stable contact with the active alloy particles. The additive Vulcan-XC-72 enhances the capacity of the electrode above that of an electrode with acetylene black or copper. The behavior of the electrodes, in respect to the effect of the additives, were similar with the AB[sub 2] and AB[sub 5] alloys as active materials.</abstract><cop>Pennington, NJ</cop><pub>Electrochemical Society</pub><doi>10.1149/1.2054998</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 1994-07, Vol.141 (7), p.1747-1750
issn 0013-4651
1945-7111
language eng
recordid cdi_osti_scitechconnect_7023924
source IOP Publishing Journals
subjects 250902 - Energy Storage- Batteries- Performance & Testing
250903 - Energy Storage- Batteries- Materials, Components, & Auxiliaries
ADDITIVES
ALKALI METAL COMPOUNDS
ALLOYS
CARBONACEOUS MATERIALS
CHEMICAL COMPOSITION
Chemistry
CHROMIUM ALLOYS
COBALT ADDITIONS
COBALT ALLOYS
ELECTRIC BATTERIES
ELECTROCHEMICAL CELLS
Electrochemistry
ELECTRODES
Electrodes: preparations and properties
ELEMENTS
ENERGY STORAGE
Exact sciences and technology
General and physical chemistry
HYDROGEN COMPOUNDS
HYDROXIDES
INTERMETALLIC COMPOUNDS
LANTHANUM ALLOYS
LIFETIME
MATERIALS
METAL-NONMETAL BATTERIES
METALS
MORPHOLOGY
NEODYMIUM ADDITIONS
NEODYMIUM ALLOYS
NICKEL
NICKEL ALLOYS
NICKEL BASE ALLOYS
OPTIMIZATION
Other electrodes
OXYGEN COMPOUNDS
POTASSIUM COMPOUNDS
POTASSIUM HYDROXIDES
RARE EARTH ADDITIONS
RARE EARTH ALLOYS
SERVICE LIFE
TIN ADDITIONS
TIN ALLOYS
TITANIUM ALLOYS
TRANSITION ELEMENTS
VANADIUM ALLOYS
VOLTAGE DROP
ZIRCONIUM ALLOYS
title Optimization of composition and structure of metal-hydride electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20composition%20and%20structure%20of%20metal-hydride%20electrodes&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=PETROV,%20K&rft.date=1994-07-01&rft.volume=141&rft.issue=7&rft.spage=1747&rft.epage=1750&rft.pages=1747-1750&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1.2054998&rft_dat=%3Cpascalfrancis_osti_%3E4253260%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true