Analytic banded approximation for the discretized free propagator

The wave packet that represents a physical molecular scattering system of interest evolves according to the time-dependent Schroedinger equation (TDSE), which is a linear, first order (in time), differential equation. In recent years, there has been considerable interest in the development and appli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry (1952) 1991-10, Vol.95 (21), p.8299-8305
Hauptverfasser: Hoffman, David K, Nayar, Naresh, Sharafeddin, Omar A, Kouri, D. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8305
container_issue 21
container_start_page 8299
container_title Journal of physical chemistry (1952)
container_volume 95
creator Hoffman, David K
Nayar, Naresh
Sharafeddin, Omar A
Kouri, D. J
description The wave packet that represents a physical molecular scattering system of interest evolves according to the time-dependent Schroedinger equation (TDSE), which is a linear, first order (in time), differential equation. In recent years, there has been considerable interest in the development and application of numerical methods for solving dynamics problems using time-dependent methods. A procedure for obtaining an approximate sparse (banded) matrix for the coordination representation of the free-particle propagator is presented. The technique takes advantage of the fact that the action of the free propagator on Hermite polynomials can be obtained analytically and represents the propagator in terms of its effect on the Hermite basis.
doi_str_mv 10.1021/j100174a052
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7011432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a151074788</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-4d1e10e6e341304b47c0a3ba9515ea2b5e1a623608188e423f8697c3c39411b53</originalsourceid><addsrcrecordid>eNpt0E1LAzEQBuAgCtbqyT-wiOBBVjP52LTHWq0fFBSs9Bhm06xNrbtLEqH11xtZEQ-e5jDPDDMvIcdAL4AyuFwBpaAEUsl2SA-kgFwqQXdJj1LGcl5IsU8OQljR5DiHHhmNalxvozNZifXCLjJsW99s3DtG19RZ1fgsLm22cMF4G91nEpW3NkuoxVeMjT8kexWugz36qX3yMrmZje_y6ePt_Xg0zZFLFXOxAAvUFpYL4FSUQhmKvMShBGmRldICFowXdACDgRWMV4NiqAw3fCgASsn75KTb24TodDAuWrM0TV1bE7WiAIKzhM47ZHwTgreVbn36xW81UP0dkf4TUdKnnW4xGFxXHmvjwu-IlMWQQZFY3jEXot38ttG_6UJxJfXs6VnP1fXDnKmJvkr-rPNogl41Hz5FHP494AtC6X8e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analytic banded approximation for the discretized free propagator</title><source>ACS Publications</source><creator>Hoffman, David K ; Nayar, Naresh ; Sharafeddin, Omar A ; Kouri, D. J</creator><creatorcontrib>Hoffman, David K ; Nayar, Naresh ; Sharafeddin, Omar A ; Kouri, D. J</creatorcontrib><description>The wave packet that represents a physical molecular scattering system of interest evolves according to the time-dependent Schroedinger equation (TDSE), which is a linear, first order (in time), differential equation. In recent years, there has been considerable interest in the development and application of numerical methods for solving dynamics problems using time-dependent methods. A procedure for obtaining an approximate sparse (banded) matrix for the coordination representation of the free-particle propagator is presented. The technique takes advantage of the fact that the action of the free propagator on Hermite polynomials can be obtained analytically and represents the propagator in terms of its effect on the Hermite basis.</description><identifier>ISSN: 0022-3654</identifier><identifier>EISSN: 1541-5740</identifier><identifier>DOI: 10.1021/j100174a052</identifier><identifier>CODEN: JPCHAX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>664300 - Atomic &amp; Molecular Physics- Collision Phenomena- (1992-) ; Atomic and molecular collision processes and interactions ; ATOMIC AND MOLECULAR PHYSICS ; DYNAMICS ; Exact sciences and technology ; FUNCTIONS ; General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.) ; HERMITE POLYNOMIALS ; MATHEMATICAL MODELS ; MATRICES ; MECHANICS ; MOLECULES ; Physics ; POLYNOMIALS ; PROPAGATOR ; SCATTERING</subject><ispartof>Journal of physical chemistry (1952), 1991-10, Vol.95 (21), p.8299-8305</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-4d1e10e6e341304b47c0a3ba9515ea2b5e1a623608188e423f8697c3c39411b53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/j100174a052$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/j100174a052$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5569216$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7011432$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoffman, David K</creatorcontrib><creatorcontrib>Nayar, Naresh</creatorcontrib><creatorcontrib>Sharafeddin, Omar A</creatorcontrib><creatorcontrib>Kouri, D. J</creatorcontrib><title>Analytic banded approximation for the discretized free propagator</title><title>Journal of physical chemistry (1952)</title><addtitle>J. Phys. Chem</addtitle><description>The wave packet that represents a physical molecular scattering system of interest evolves according to the time-dependent Schroedinger equation (TDSE), which is a linear, first order (in time), differential equation. In recent years, there has been considerable interest in the development and application of numerical methods for solving dynamics problems using time-dependent methods. A procedure for obtaining an approximate sparse (banded) matrix for the coordination representation of the free-particle propagator is presented. The technique takes advantage of the fact that the action of the free propagator on Hermite polynomials can be obtained analytically and represents the propagator in terms of its effect on the Hermite basis.</description><subject>664300 - Atomic &amp; Molecular Physics- Collision Phenomena- (1992-)</subject><subject>Atomic and molecular collision processes and interactions</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>DYNAMICS</subject><subject>Exact sciences and technology</subject><subject>FUNCTIONS</subject><subject>General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.)</subject><subject>HERMITE POLYNOMIALS</subject><subject>MATHEMATICAL MODELS</subject><subject>MATRICES</subject><subject>MECHANICS</subject><subject>MOLECULES</subject><subject>Physics</subject><subject>POLYNOMIALS</subject><subject>PROPAGATOR</subject><subject>SCATTERING</subject><issn>0022-3654</issn><issn>1541-5740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNpt0E1LAzEQBuAgCtbqyT-wiOBBVjP52LTHWq0fFBSs9Bhm06xNrbtLEqH11xtZEQ-e5jDPDDMvIcdAL4AyuFwBpaAEUsl2SA-kgFwqQXdJj1LGcl5IsU8OQljR5DiHHhmNalxvozNZifXCLjJsW99s3DtG19RZ1fgsLm22cMF4G91nEpW3NkuoxVeMjT8kexWugz36qX3yMrmZje_y6ePt_Xg0zZFLFXOxAAvUFpYL4FSUQhmKvMShBGmRldICFowXdACDgRWMV4NiqAw3fCgASsn75KTb24TodDAuWrM0TV1bE7WiAIKzhM47ZHwTgreVbn36xW81UP0dkf4TUdKnnW4xGFxXHmvjwu-IlMWQQZFY3jEXot38ttG_6UJxJfXs6VnP1fXDnKmJvkr-rPNogl41Hz5FHP494AtC6X8e</recordid><startdate>19911001</startdate><enddate>19911001</enddate><creator>Hoffman, David K</creator><creator>Nayar, Naresh</creator><creator>Sharafeddin, Omar A</creator><creator>Kouri, D. J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19911001</creationdate><title>Analytic banded approximation for the discretized free propagator</title><author>Hoffman, David K ; Nayar, Naresh ; Sharafeddin, Omar A ; Kouri, D. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-4d1e10e6e341304b47c0a3ba9515ea2b5e1a623608188e423f8697c3c39411b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>664300 - Atomic &amp; Molecular Physics- Collision Phenomena- (1992-)</topic><topic>Atomic and molecular collision processes and interactions</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>DYNAMICS</topic><topic>Exact sciences and technology</topic><topic>FUNCTIONS</topic><topic>General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.)</topic><topic>HERMITE POLYNOMIALS</topic><topic>MATHEMATICAL MODELS</topic><topic>MATRICES</topic><topic>MECHANICS</topic><topic>MOLECULES</topic><topic>Physics</topic><topic>POLYNOMIALS</topic><topic>PROPAGATOR</topic><topic>SCATTERING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffman, David K</creatorcontrib><creatorcontrib>Nayar, Naresh</creatorcontrib><creatorcontrib>Sharafeddin, Omar A</creatorcontrib><creatorcontrib>Kouri, D. J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry (1952)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffman, David K</au><au>Nayar, Naresh</au><au>Sharafeddin, Omar A</au><au>Kouri, D. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic banded approximation for the discretized free propagator</atitle><jtitle>Journal of physical chemistry (1952)</jtitle><addtitle>J. Phys. Chem</addtitle><date>1991-10-01</date><risdate>1991</risdate><volume>95</volume><issue>21</issue><spage>8299</spage><epage>8305</epage><pages>8299-8305</pages><issn>0022-3654</issn><eissn>1541-5740</eissn><coden>JPCHAX</coden><abstract>The wave packet that represents a physical molecular scattering system of interest evolves according to the time-dependent Schroedinger equation (TDSE), which is a linear, first order (in time), differential equation. In recent years, there has been considerable interest in the development and application of numerical methods for solving dynamics problems using time-dependent methods. A procedure for obtaining an approximate sparse (banded) matrix for the coordination representation of the free-particle propagator is presented. The technique takes advantage of the fact that the action of the free propagator on Hermite polynomials can be obtained analytically and represents the propagator in terms of its effect on the Hermite basis.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/j100174a052</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3654
ispartof Journal of physical chemistry (1952), 1991-10, Vol.95 (21), p.8299-8305
issn 0022-3654
1541-5740
language eng
recordid cdi_osti_scitechconnect_7011432
source ACS Publications
subjects 664300 - Atomic & Molecular Physics- Collision Phenomena- (1992-)
Atomic and molecular collision processes and interactions
ATOMIC AND MOLECULAR PHYSICS
DYNAMICS
Exact sciences and technology
FUNCTIONS
General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.)
HERMITE POLYNOMIALS
MATHEMATICAL MODELS
MATRICES
MECHANICS
MOLECULES
Physics
POLYNOMIALS
PROPAGATOR
SCATTERING
title Analytic banded approximation for the discretized free propagator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20banded%20approximation%20for%20the%20discretized%20free%20propagator&rft.jtitle=Journal%20of%20physical%20chemistry%20(1952)&rft.au=Hoffman,%20David%20K&rft.date=1991-10-01&rft.volume=95&rft.issue=21&rft.spage=8299&rft.epage=8305&rft.pages=8299-8305&rft.issn=0022-3654&rft.eissn=1541-5740&rft.coden=JPCHAX&rft_id=info:doi/10.1021/j100174a052&rft_dat=%3Cacs_osti_%3Ea151074788%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true