Analytic banded approximation for the discretized free propagator
The wave packet that represents a physical molecular scattering system of interest evolves according to the time-dependent Schroedinger equation (TDSE), which is a linear, first order (in time), differential equation. In recent years, there has been considerable interest in the development and appli...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry (1952) 1991-10, Vol.95 (21), p.8299-8305 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8305 |
---|---|
container_issue | 21 |
container_start_page | 8299 |
container_title | Journal of physical chemistry (1952) |
container_volume | 95 |
creator | Hoffman, David K Nayar, Naresh Sharafeddin, Omar A Kouri, D. J |
description | The wave packet that represents a physical molecular scattering system of interest evolves according to the time-dependent Schroedinger equation (TDSE), which is a linear, first order (in time), differential equation. In recent years, there has been considerable interest in the development and application of numerical methods for solving dynamics problems using time-dependent methods. A procedure for obtaining an approximate sparse (banded) matrix for the coordination representation of the free-particle propagator is presented. The technique takes advantage of the fact that the action of the free propagator on Hermite polynomials can be obtained analytically and represents the propagator in terms of its effect on the Hermite basis. |
doi_str_mv | 10.1021/j100174a052 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_7011432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a151074788</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-4d1e10e6e341304b47c0a3ba9515ea2b5e1a623608188e423f8697c3c39411b53</originalsourceid><addsrcrecordid>eNpt0E1LAzEQBuAgCtbqyT-wiOBBVjP52LTHWq0fFBSs9Bhm06xNrbtLEqH11xtZEQ-e5jDPDDMvIcdAL4AyuFwBpaAEUsl2SA-kgFwqQXdJj1LGcl5IsU8OQljR5DiHHhmNalxvozNZifXCLjJsW99s3DtG19RZ1fgsLm22cMF4G91nEpW3NkuoxVeMjT8kexWugz36qX3yMrmZje_y6ePt_Xg0zZFLFXOxAAvUFpYL4FSUQhmKvMShBGmRldICFowXdACDgRWMV4NiqAw3fCgASsn75KTb24TodDAuWrM0TV1bE7WiAIKzhM47ZHwTgreVbn36xW81UP0dkf4TUdKnnW4xGFxXHmvjwu-IlMWQQZFY3jEXot38ttG_6UJxJfXs6VnP1fXDnKmJvkr-rPNogl41Hz5FHP494AtC6X8e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analytic banded approximation for the discretized free propagator</title><source>ACS Publications</source><creator>Hoffman, David K ; Nayar, Naresh ; Sharafeddin, Omar A ; Kouri, D. J</creator><creatorcontrib>Hoffman, David K ; Nayar, Naresh ; Sharafeddin, Omar A ; Kouri, D. J</creatorcontrib><description>The wave packet that represents a physical molecular scattering system of interest evolves according to the time-dependent Schroedinger equation (TDSE), which is a linear, first order (in time), differential equation. In recent years, there has been considerable interest in the development and application of numerical methods for solving dynamics problems using time-dependent methods. A procedure for obtaining an approximate sparse (banded) matrix for the coordination representation of the free-particle propagator is presented. The technique takes advantage of the fact that the action of the free propagator on Hermite polynomials can be obtained analytically and represents the propagator in terms of its effect on the Hermite basis.</description><identifier>ISSN: 0022-3654</identifier><identifier>EISSN: 1541-5740</identifier><identifier>DOI: 10.1021/j100174a052</identifier><identifier>CODEN: JPCHAX</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>664300 - Atomic & Molecular Physics- Collision Phenomena- (1992-) ; Atomic and molecular collision processes and interactions ; ATOMIC AND MOLECULAR PHYSICS ; DYNAMICS ; Exact sciences and technology ; FUNCTIONS ; General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.) ; HERMITE POLYNOMIALS ; MATHEMATICAL MODELS ; MATRICES ; MECHANICS ; MOLECULES ; Physics ; POLYNOMIALS ; PROPAGATOR ; SCATTERING</subject><ispartof>Journal of physical chemistry (1952), 1991-10, Vol.95 (21), p.8299-8305</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-4d1e10e6e341304b47c0a3ba9515ea2b5e1a623608188e423f8697c3c39411b53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/j100174a052$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/j100174a052$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5569216$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/7011432$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoffman, David K</creatorcontrib><creatorcontrib>Nayar, Naresh</creatorcontrib><creatorcontrib>Sharafeddin, Omar A</creatorcontrib><creatorcontrib>Kouri, D. J</creatorcontrib><title>Analytic banded approximation for the discretized free propagator</title><title>Journal of physical chemistry (1952)</title><addtitle>J. Phys. Chem</addtitle><description>The wave packet that represents a physical molecular scattering system of interest evolves according to the time-dependent Schroedinger equation (TDSE), which is a linear, first order (in time), differential equation. In recent years, there has been considerable interest in the development and application of numerical methods for solving dynamics problems using time-dependent methods. A procedure for obtaining an approximate sparse (banded) matrix for the coordination representation of the free-particle propagator is presented. The technique takes advantage of the fact that the action of the free propagator on Hermite polynomials can be obtained analytically and represents the propagator in terms of its effect on the Hermite basis.</description><subject>664300 - Atomic & Molecular Physics- Collision Phenomena- (1992-)</subject><subject>Atomic and molecular collision processes and interactions</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>DYNAMICS</subject><subject>Exact sciences and technology</subject><subject>FUNCTIONS</subject><subject>General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.)</subject><subject>HERMITE POLYNOMIALS</subject><subject>MATHEMATICAL MODELS</subject><subject>MATRICES</subject><subject>MECHANICS</subject><subject>MOLECULES</subject><subject>Physics</subject><subject>POLYNOMIALS</subject><subject>PROPAGATOR</subject><subject>SCATTERING</subject><issn>0022-3654</issn><issn>1541-5740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNpt0E1LAzEQBuAgCtbqyT-wiOBBVjP52LTHWq0fFBSs9Bhm06xNrbtLEqH11xtZEQ-e5jDPDDMvIcdAL4AyuFwBpaAEUsl2SA-kgFwqQXdJj1LGcl5IsU8OQljR5DiHHhmNalxvozNZifXCLjJsW99s3DtG19RZ1fgsLm22cMF4G91nEpW3NkuoxVeMjT8kexWugz36qX3yMrmZje_y6ePt_Xg0zZFLFXOxAAvUFpYL4FSUQhmKvMShBGmRldICFowXdACDgRWMV4NiqAw3fCgASsn75KTb24TodDAuWrM0TV1bE7WiAIKzhM47ZHwTgreVbn36xW81UP0dkf4TUdKnnW4xGFxXHmvjwu-IlMWQQZFY3jEXot38ttG_6UJxJfXs6VnP1fXDnKmJvkr-rPNogl41Hz5FHP494AtC6X8e</recordid><startdate>19911001</startdate><enddate>19911001</enddate><creator>Hoffman, David K</creator><creator>Nayar, Naresh</creator><creator>Sharafeddin, Omar A</creator><creator>Kouri, D. J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19911001</creationdate><title>Analytic banded approximation for the discretized free propagator</title><author>Hoffman, David K ; Nayar, Naresh ; Sharafeddin, Omar A ; Kouri, D. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-4d1e10e6e341304b47c0a3ba9515ea2b5e1a623608188e423f8697c3c39411b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>664300 - Atomic & Molecular Physics- Collision Phenomena- (1992-)</topic><topic>Atomic and molecular collision processes and interactions</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>DYNAMICS</topic><topic>Exact sciences and technology</topic><topic>FUNCTIONS</topic><topic>General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.)</topic><topic>HERMITE POLYNOMIALS</topic><topic>MATHEMATICAL MODELS</topic><topic>MATRICES</topic><topic>MECHANICS</topic><topic>MOLECULES</topic><topic>Physics</topic><topic>POLYNOMIALS</topic><topic>PROPAGATOR</topic><topic>SCATTERING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffman, David K</creatorcontrib><creatorcontrib>Nayar, Naresh</creatorcontrib><creatorcontrib>Sharafeddin, Omar A</creatorcontrib><creatorcontrib>Kouri, D. J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry (1952)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffman, David K</au><au>Nayar, Naresh</au><au>Sharafeddin, Omar A</au><au>Kouri, D. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic banded approximation for the discretized free propagator</atitle><jtitle>Journal of physical chemistry (1952)</jtitle><addtitle>J. Phys. Chem</addtitle><date>1991-10-01</date><risdate>1991</risdate><volume>95</volume><issue>21</issue><spage>8299</spage><epage>8305</epage><pages>8299-8305</pages><issn>0022-3654</issn><eissn>1541-5740</eissn><coden>JPCHAX</coden><abstract>The wave packet that represents a physical molecular scattering system of interest evolves according to the time-dependent Schroedinger equation (TDSE), which is a linear, first order (in time), differential equation. In recent years, there has been considerable interest in the development and application of numerical methods for solving dynamics problems using time-dependent methods. A procedure for obtaining an approximate sparse (banded) matrix for the coordination representation of the free-particle propagator is presented. The technique takes advantage of the fact that the action of the free propagator on Hermite polynomials can be obtained analytically and represents the propagator in terms of its effect on the Hermite basis.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/j100174a052</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3654 |
ispartof | Journal of physical chemistry (1952), 1991-10, Vol.95 (21), p.8299-8305 |
issn | 0022-3654 1541-5740 |
language | eng |
recordid | cdi_osti_scitechconnect_7011432 |
source | ACS Publications |
subjects | 664300 - Atomic & Molecular Physics- Collision Phenomena- (1992-) Atomic and molecular collision processes and interactions ATOMIC AND MOLECULAR PHYSICS DYNAMICS Exact sciences and technology FUNCTIONS General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.) HERMITE POLYNOMIALS MATHEMATICAL MODELS MATRICES MECHANICS MOLECULES Physics POLYNOMIALS PROPAGATOR SCATTERING |
title | Analytic banded approximation for the discretized free propagator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20banded%20approximation%20for%20the%20discretized%20free%20propagator&rft.jtitle=Journal%20of%20physical%20chemistry%20(1952)&rft.au=Hoffman,%20David%20K&rft.date=1991-10-01&rft.volume=95&rft.issue=21&rft.spage=8299&rft.epage=8305&rft.pages=8299-8305&rft.issn=0022-3654&rft.eissn=1541-5740&rft.coden=JPCHAX&rft_id=info:doi/10.1021/j100174a052&rft_dat=%3Cacs_osti_%3Ea151074788%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |