Classical theory of collective motion in the large amplitude, small velocity regime

A classical theory of collective motion is developed for the large amplitude, small velocity limit, i.e., for a hamiltonian that is at most quadratic in the momenta, allowance being made for a mass tensor that is a general function of the coordinates. It is based on the identification of decoupled m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics 1991-05, Vol.208 (1), p.90-148
Hauptverfasser: Klein, Abraham, Walet, Niels R, Do Dang, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue 1
container_start_page 90
container_title Annals of physics
container_volume 208
creator Klein, Abraham
Walet, Niels R
Do Dang, G
description A classical theory of collective motion is developed for the large amplitude, small velocity limit, i.e., for a hamiltonian that is at most quadratic in the momenta, allowance being made for a mass tensor that is a general function of the coordinates. It is based on the identification of decoupled motions that are confined to submanifolds of the full configuration space. Conditions for decoupling are derived and then transformed into several different sets of equivalent conditions, more useful for practical applications. Algorithms are given for constructing manifolds that are exactly decoupled if a given dynamical system admits such motions and that can be utilized as well when there is approximate decoupling, as evidenced by criteria that are established. Some examples are worked out. The connection to previous research on this problem is described.
doi_str_mv 10.1016/0003-4916(91)90343-7
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6973158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0003491691903437</els_id><sourcerecordid>0003491691903437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-9f952b61336b699641d73edffc747fc02b734cca4e969a2f738bb24f0774f1bb3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKtv4CKICwVHk0kmaTaCFP-g4EIFdyGTuWkjmUlJxkLf3hkrLl3dRc6X-92D0Ckl15RQcUMIYQVXVFwoeqkI46yQe2hCiRIFYdXHPpr8IYfoKOdPQijl1WyCXufB5OytCbhfQUxbHB22MQSwvd8AbmPvY4d9Nz7jYNISsGnXwfdfDVzh3JoQ8AZCtL7f4gRL38IxOnAmZDj5nVP0_nD_Nn8qFi-Pz_O7RWF5KfpCOVWVtaCMiVooJThtJIPGOSu5dJaUtWTcWsNBCWVKJ9msrkvuiJTc0bpmU3S2-zfm3us8NAC7srHrhu5aKMloNRsgvoNsijkncHqdfGvSVlOiR3t6VKNHNVpR_WNPyyF2voutTR7kuGQ66_NftuKUlxUdsNsdBsOdGw9prAGdhcansUUT_f97vgEEtYMv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Classical theory of collective motion in the large amplitude, small velocity regime</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Klein, Abraham ; Walet, Niels R ; Do Dang, G</creator><creatorcontrib>Klein, Abraham ; Walet, Niels R ; Do Dang, G</creatorcontrib><description>A classical theory of collective motion is developed for the large amplitude, small velocity limit, i.e., for a hamiltonian that is at most quadratic in the momenta, allowance being made for a mass tensor that is a general function of the coordinates. It is based on the identification of decoupled motions that are confined to submanifolds of the full configuration space. Conditions for decoupling are derived and then transformed into several different sets of equivalent conditions, more useful for practical applications. Algorithms are given for constructing manifolds that are exactly decoupled if a given dynamical system admits such motions and that can be utilized as well when there is approximate decoupling, as evidenced by criteria that are established. Some examples are worked out. The connection to previous research on this problem is described.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/0003-4916(91)90343-7</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>661100 - Classical &amp; Quantum Mechanics- (1992-) ; ALGORITHMS ; ATOMIC PHYSICS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical and quantum physics: mechanics and fields ; CLASSICAL MECHANICS ; COORDINATES ; DIFFERENTIAL EQUATIONS ; EQUATIONS ; EQUATIONS OF MOTION ; Exact sciences and technology ; HAMILTONIANS ; MANY-BODY PROBLEM ; MATHEMATICAL LOGIC ; MATHEMATICAL MANIFOLDS ; MATHEMATICAL OPERATORS ; MECHANICS ; NUCLEAR PHYSICS ; PARTIAL DIFFERENTIAL EQUATIONS ; PHYSICS ; QUANTIZATION ; QUANTUM OPERATORS ; TRANSFORMATIONS</subject><ispartof>Annals of physics, 1991-05, Vol.208 (1), p.90-148</ispartof><rights>1991</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-9f952b61336b699641d73edffc747fc02b734cca4e969a2f738bb24f0774f1bb3</citedby><cites>FETCH-LOGICAL-c426t-9f952b61336b699641d73edffc747fc02b734cca4e969a2f738bb24f0774f1bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0003-4916(91)90343-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5414251$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6973158$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, Abraham</creatorcontrib><creatorcontrib>Walet, Niels R</creatorcontrib><creatorcontrib>Do Dang, G</creatorcontrib><title>Classical theory of collective motion in the large amplitude, small velocity regime</title><title>Annals of physics</title><description>A classical theory of collective motion is developed for the large amplitude, small velocity limit, i.e., for a hamiltonian that is at most quadratic in the momenta, allowance being made for a mass tensor that is a general function of the coordinates. It is based on the identification of decoupled motions that are confined to submanifolds of the full configuration space. Conditions for decoupling are derived and then transformed into several different sets of equivalent conditions, more useful for practical applications. Algorithms are given for constructing manifolds that are exactly decoupled if a given dynamical system admits such motions and that can be utilized as well when there is approximate decoupling, as evidenced by criteria that are established. Some examples are worked out. The connection to previous research on this problem is described.</description><subject>661100 - Classical &amp; Quantum Mechanics- (1992-)</subject><subject>ALGORITHMS</subject><subject>ATOMIC PHYSICS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>CLASSICAL MECHANICS</subject><subject>COORDINATES</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF MOTION</subject><subject>Exact sciences and technology</subject><subject>HAMILTONIANS</subject><subject>MANY-BODY PROBLEM</subject><subject>MATHEMATICAL LOGIC</subject><subject>MATHEMATICAL MANIFOLDS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MECHANICS</subject><subject>NUCLEAR PHYSICS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PHYSICS</subject><subject>QUANTIZATION</subject><subject>QUANTUM OPERATORS</subject><subject>TRANSFORMATIONS</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKtv4CKICwVHk0kmaTaCFP-g4EIFdyGTuWkjmUlJxkLf3hkrLl3dRc6X-92D0Ckl15RQcUMIYQVXVFwoeqkI46yQe2hCiRIFYdXHPpr8IYfoKOdPQijl1WyCXufB5OytCbhfQUxbHB22MQSwvd8AbmPvY4d9Nz7jYNISsGnXwfdfDVzh3JoQ8AZCtL7f4gRL38IxOnAmZDj5nVP0_nD_Nn8qFi-Pz_O7RWF5KfpCOVWVtaCMiVooJThtJIPGOSu5dJaUtWTcWsNBCWVKJ9msrkvuiJTc0bpmU3S2-zfm3us8NAC7srHrhu5aKMloNRsgvoNsijkncHqdfGvSVlOiR3t6VKNHNVpR_WNPyyF2voutTR7kuGQ66_NftuKUlxUdsNsdBsOdGw9prAGdhcansUUT_f97vgEEtYMv</recordid><startdate>19910515</startdate><enddate>19910515</enddate><creator>Klein, Abraham</creator><creator>Walet, Niels R</creator><creator>Do Dang, G</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19910515</creationdate><title>Classical theory of collective motion in the large amplitude, small velocity regime</title><author>Klein, Abraham ; Walet, Niels R ; Do Dang, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-9f952b61336b699641d73edffc747fc02b734cca4e969a2f738bb24f0774f1bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>661100 - Classical &amp; Quantum Mechanics- (1992-)</topic><topic>ALGORITHMS</topic><topic>ATOMIC PHYSICS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>CLASSICAL MECHANICS</topic><topic>COORDINATES</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF MOTION</topic><topic>Exact sciences and technology</topic><topic>HAMILTONIANS</topic><topic>MANY-BODY PROBLEM</topic><topic>MATHEMATICAL LOGIC</topic><topic>MATHEMATICAL MANIFOLDS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MECHANICS</topic><topic>NUCLEAR PHYSICS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PHYSICS</topic><topic>QUANTIZATION</topic><topic>QUANTUM OPERATORS</topic><topic>TRANSFORMATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, Abraham</creatorcontrib><creatorcontrib>Walet, Niels R</creatorcontrib><creatorcontrib>Do Dang, G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Abraham</au><au>Walet, Niels R</au><au>Do Dang, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical theory of collective motion in the large amplitude, small velocity regime</atitle><jtitle>Annals of physics</jtitle><date>1991-05-15</date><risdate>1991</risdate><volume>208</volume><issue>1</issue><spage>90</spage><epage>148</epage><pages>90-148</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>A classical theory of collective motion is developed for the large amplitude, small velocity limit, i.e., for a hamiltonian that is at most quadratic in the momenta, allowance being made for a mass tensor that is a general function of the coordinates. It is based on the identification of decoupled motions that are confined to submanifolds of the full configuration space. Conditions for decoupling are derived and then transformed into several different sets of equivalent conditions, more useful for practical applications. Algorithms are given for constructing manifolds that are exactly decoupled if a given dynamical system admits such motions and that can be utilized as well when there is approximate decoupling, as evidenced by criteria that are established. Some examples are worked out. The connection to previous research on this problem is described.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/0003-4916(91)90343-7</doi><tpages>59</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-4916
ispartof Annals of physics, 1991-05, Vol.208 (1), p.90-148
issn 0003-4916
1096-035X
language eng
recordid cdi_osti_scitechconnect_6973158
source Elsevier ScienceDirect Journals Complete
subjects 661100 - Classical & Quantum Mechanics- (1992-)
ALGORITHMS
ATOMIC PHYSICS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Classical and quantum physics: mechanics and fields
CLASSICAL MECHANICS
COORDINATES
DIFFERENTIAL EQUATIONS
EQUATIONS
EQUATIONS OF MOTION
Exact sciences and technology
HAMILTONIANS
MANY-BODY PROBLEM
MATHEMATICAL LOGIC
MATHEMATICAL MANIFOLDS
MATHEMATICAL OPERATORS
MECHANICS
NUCLEAR PHYSICS
PARTIAL DIFFERENTIAL EQUATIONS
PHYSICS
QUANTIZATION
QUANTUM OPERATORS
TRANSFORMATIONS
title Classical theory of collective motion in the large amplitude, small velocity regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20theory%20of%20collective%20motion%20in%20the%20large%20amplitude,%20small%20velocity%20regime&rft.jtitle=Annals%20of%20physics&rft.au=Klein,%20Abraham&rft.date=1991-05-15&rft.volume=208&rft.issue=1&rft.spage=90&rft.epage=148&rft.pages=90-148&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/0003-4916(91)90343-7&rft_dat=%3Celsevier_osti_%3E0003491691903437%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=0003491691903437&rfr_iscdi=true