Classical theory of collective motion in the large amplitude, small velocity regime
A classical theory of collective motion is developed for the large amplitude, small velocity limit, i.e., for a hamiltonian that is at most quadratic in the momenta, allowance being made for a mass tensor that is a general function of the coordinates. It is based on the identification of decoupled m...
Gespeichert in:
Veröffentlicht in: | Annals of physics 1991-05, Vol.208 (1), p.90-148 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | 1 |
container_start_page | 90 |
container_title | Annals of physics |
container_volume | 208 |
creator | Klein, Abraham Walet, Niels R Do Dang, G |
description | A classical theory of collective motion is developed for the large amplitude, small velocity limit, i.e., for a hamiltonian that is at most quadratic in the momenta, allowance being made for a mass tensor that is a general function of the coordinates. It is based on the identification of decoupled motions that are confined to submanifolds of the full configuration space. Conditions for decoupling are derived and then transformed into several different sets of equivalent conditions, more useful for practical applications. Algorithms are given for constructing manifolds that are exactly decoupled if a given dynamical system admits such motions and that can be utilized as well when there is approximate decoupling, as evidenced by criteria that are established. Some examples are worked out. The connection to previous research on this problem is described. |
doi_str_mv | 10.1016/0003-4916(91)90343-7 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6973158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0003491691903437</els_id><sourcerecordid>0003491691903437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-9f952b61336b699641d73edffc747fc02b734cca4e969a2f738bb24f0774f1bb3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKtv4CKICwVHk0kmaTaCFP-g4EIFdyGTuWkjmUlJxkLf3hkrLl3dRc6X-92D0Ckl15RQcUMIYQVXVFwoeqkI46yQe2hCiRIFYdXHPpr8IYfoKOdPQijl1WyCXufB5OytCbhfQUxbHB22MQSwvd8AbmPvY4d9Nz7jYNISsGnXwfdfDVzh3JoQ8AZCtL7f4gRL38IxOnAmZDj5nVP0_nD_Nn8qFi-Pz_O7RWF5KfpCOVWVtaCMiVooJThtJIPGOSu5dJaUtWTcWsNBCWVKJ9msrkvuiJTc0bpmU3S2-zfm3us8NAC7srHrhu5aKMloNRsgvoNsijkncHqdfGvSVlOiR3t6VKNHNVpR_WNPyyF2voutTR7kuGQ66_NftuKUlxUdsNsdBsOdGw9prAGdhcansUUT_f97vgEEtYMv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Classical theory of collective motion in the large amplitude, small velocity regime</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Klein, Abraham ; Walet, Niels R ; Do Dang, G</creator><creatorcontrib>Klein, Abraham ; Walet, Niels R ; Do Dang, G</creatorcontrib><description>A classical theory of collective motion is developed for the large amplitude, small velocity limit, i.e., for a hamiltonian that is at most quadratic in the momenta, allowance being made for a mass tensor that is a general function of the coordinates. It is based on the identification of decoupled motions that are confined to submanifolds of the full configuration space. Conditions for decoupling are derived and then transformed into several different sets of equivalent conditions, more useful for practical applications. Algorithms are given for constructing manifolds that are exactly decoupled if a given dynamical system admits such motions and that can be utilized as well when there is approximate decoupling, as evidenced by criteria that are established. Some examples are worked out. The connection to previous research on this problem is described.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/0003-4916(91)90343-7</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>661100 - Classical & Quantum Mechanics- (1992-) ; ALGORITHMS ; ATOMIC PHYSICS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical and quantum physics: mechanics and fields ; CLASSICAL MECHANICS ; COORDINATES ; DIFFERENTIAL EQUATIONS ; EQUATIONS ; EQUATIONS OF MOTION ; Exact sciences and technology ; HAMILTONIANS ; MANY-BODY PROBLEM ; MATHEMATICAL LOGIC ; MATHEMATICAL MANIFOLDS ; MATHEMATICAL OPERATORS ; MECHANICS ; NUCLEAR PHYSICS ; PARTIAL DIFFERENTIAL EQUATIONS ; PHYSICS ; QUANTIZATION ; QUANTUM OPERATORS ; TRANSFORMATIONS</subject><ispartof>Annals of physics, 1991-05, Vol.208 (1), p.90-148</ispartof><rights>1991</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-9f952b61336b699641d73edffc747fc02b734cca4e969a2f738bb24f0774f1bb3</citedby><cites>FETCH-LOGICAL-c426t-9f952b61336b699641d73edffc747fc02b734cca4e969a2f738bb24f0774f1bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0003-4916(91)90343-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5414251$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6973158$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, Abraham</creatorcontrib><creatorcontrib>Walet, Niels R</creatorcontrib><creatorcontrib>Do Dang, G</creatorcontrib><title>Classical theory of collective motion in the large amplitude, small velocity regime</title><title>Annals of physics</title><description>A classical theory of collective motion is developed for the large amplitude, small velocity limit, i.e., for a hamiltonian that is at most quadratic in the momenta, allowance being made for a mass tensor that is a general function of the coordinates. It is based on the identification of decoupled motions that are confined to submanifolds of the full configuration space. Conditions for decoupling are derived and then transformed into several different sets of equivalent conditions, more useful for practical applications. Algorithms are given for constructing manifolds that are exactly decoupled if a given dynamical system admits such motions and that can be utilized as well when there is approximate decoupling, as evidenced by criteria that are established. Some examples are worked out. The connection to previous research on this problem is described.</description><subject>661100 - Classical & Quantum Mechanics- (1992-)</subject><subject>ALGORITHMS</subject><subject>ATOMIC PHYSICS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>CLASSICAL MECHANICS</subject><subject>COORDINATES</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF MOTION</subject><subject>Exact sciences and technology</subject><subject>HAMILTONIANS</subject><subject>MANY-BODY PROBLEM</subject><subject>MATHEMATICAL LOGIC</subject><subject>MATHEMATICAL MANIFOLDS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MECHANICS</subject><subject>NUCLEAR PHYSICS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PHYSICS</subject><subject>QUANTIZATION</subject><subject>QUANTUM OPERATORS</subject><subject>TRANSFORMATIONS</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKtv4CKICwVHk0kmaTaCFP-g4EIFdyGTuWkjmUlJxkLf3hkrLl3dRc6X-92D0Ckl15RQcUMIYQVXVFwoeqkI46yQe2hCiRIFYdXHPpr8IYfoKOdPQijl1WyCXufB5OytCbhfQUxbHB22MQSwvd8AbmPvY4d9Nz7jYNISsGnXwfdfDVzh3JoQ8AZCtL7f4gRL38IxOnAmZDj5nVP0_nD_Nn8qFi-Pz_O7RWF5KfpCOVWVtaCMiVooJThtJIPGOSu5dJaUtWTcWsNBCWVKJ9msrkvuiJTc0bpmU3S2-zfm3us8NAC7srHrhu5aKMloNRsgvoNsijkncHqdfGvSVlOiR3t6VKNHNVpR_WNPyyF2voutTR7kuGQ66_NftuKUlxUdsNsdBsOdGw9prAGdhcansUUT_f97vgEEtYMv</recordid><startdate>19910515</startdate><enddate>19910515</enddate><creator>Klein, Abraham</creator><creator>Walet, Niels R</creator><creator>Do Dang, G</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19910515</creationdate><title>Classical theory of collective motion in the large amplitude, small velocity regime</title><author>Klein, Abraham ; Walet, Niels R ; Do Dang, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-9f952b61336b699641d73edffc747fc02b734cca4e969a2f738bb24f0774f1bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>661100 - Classical & Quantum Mechanics- (1992-)</topic><topic>ALGORITHMS</topic><topic>ATOMIC PHYSICS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>CLASSICAL MECHANICS</topic><topic>COORDINATES</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF MOTION</topic><topic>Exact sciences and technology</topic><topic>HAMILTONIANS</topic><topic>MANY-BODY PROBLEM</topic><topic>MATHEMATICAL LOGIC</topic><topic>MATHEMATICAL MANIFOLDS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MECHANICS</topic><topic>NUCLEAR PHYSICS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PHYSICS</topic><topic>QUANTIZATION</topic><topic>QUANTUM OPERATORS</topic><topic>TRANSFORMATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, Abraham</creatorcontrib><creatorcontrib>Walet, Niels R</creatorcontrib><creatorcontrib>Do Dang, G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Abraham</au><au>Walet, Niels R</au><au>Do Dang, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical theory of collective motion in the large amplitude, small velocity regime</atitle><jtitle>Annals of physics</jtitle><date>1991-05-15</date><risdate>1991</risdate><volume>208</volume><issue>1</issue><spage>90</spage><epage>148</epage><pages>90-148</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>A classical theory of collective motion is developed for the large amplitude, small velocity limit, i.e., for a hamiltonian that is at most quadratic in the momenta, allowance being made for a mass tensor that is a general function of the coordinates. It is based on the identification of decoupled motions that are confined to submanifolds of the full configuration space. Conditions for decoupling are derived and then transformed into several different sets of equivalent conditions, more useful for practical applications. Algorithms are given for constructing manifolds that are exactly decoupled if a given dynamical system admits such motions and that can be utilized as well when there is approximate decoupling, as evidenced by criteria that are established. Some examples are worked out. The connection to previous research on this problem is described.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/0003-4916(91)90343-7</doi><tpages>59</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-4916 |
ispartof | Annals of physics, 1991-05, Vol.208 (1), p.90-148 |
issn | 0003-4916 1096-035X |
language | eng |
recordid | cdi_osti_scitechconnect_6973158 |
source | Elsevier ScienceDirect Journals Complete |
subjects | 661100 - Classical & Quantum Mechanics- (1992-) ALGORITHMS ATOMIC PHYSICS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Classical and quantum physics: mechanics and fields CLASSICAL MECHANICS COORDINATES DIFFERENTIAL EQUATIONS EQUATIONS EQUATIONS OF MOTION Exact sciences and technology HAMILTONIANS MANY-BODY PROBLEM MATHEMATICAL LOGIC MATHEMATICAL MANIFOLDS MATHEMATICAL OPERATORS MECHANICS NUCLEAR PHYSICS PARTIAL DIFFERENTIAL EQUATIONS PHYSICS QUANTIZATION QUANTUM OPERATORS TRANSFORMATIONS |
title | Classical theory of collective motion in the large amplitude, small velocity regime |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20theory%20of%20collective%20motion%20in%20the%20large%20amplitude,%20small%20velocity%20regime&rft.jtitle=Annals%20of%20physics&rft.au=Klein,%20Abraham&rft.date=1991-05-15&rft.volume=208&rft.issue=1&rft.spage=90&rft.epage=148&rft.pages=90-148&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/0003-4916(91)90343-7&rft_dat=%3Celsevier_osti_%3E0003491691903437%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=0003491691903437&rfr_iscdi=true |