Atomic Structure of the DNA Repair [4Fe-4S] Enzyme Endonuclease III

The crystal structure of the DNA repair enzyme endonuclease III, which recognizes and cleaves DNA at damaged bases, has been solved to 2.0 angstrom resolution with an R factor of 0.185. This iron-sulfur [4Fe-4S] enzyme is elongated and bilobal with a deep cleft separating two similarly sized domains...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1992-10, Vol.258 (5081), p.434-440
Hauptverfasser: Kuo, Che-Fu, McRee, Duncan E., Fisher, Cindy L., O'Handley, Suzanne F., Cunningham, Richard P., Tainer, John A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 440
container_issue 5081
container_start_page 434
container_title Science (American Association for the Advancement of Science)
container_volume 258
creator Kuo, Che-Fu
McRee, Duncan E.
Fisher, Cindy L.
O'Handley, Suzanne F.
Cunningham, Richard P.
Tainer, John A.
description The crystal structure of the DNA repair enzyme endonuclease III, which recognizes and cleaves DNA at damaged bases, has been solved to 2.0 angstrom resolution with an R factor of 0.185. This iron-sulfur [4Fe-4S] enzyme is elongated and bilobal with a deep cleft separating two similarly sized domains: a novel, sequence-continuous, six-helix domain (residues 22 to 132) and a Greek-key, four-helix domain formed by the amino-terminal and three carboxyl-terminal helices (residues 1 to 21 and 133 to 211) together with the [4Fe-4S] cluster. The cluster is bound entirely within the carboxyl-terminal loop with a ligation pattern (Cys-X$_6$-Cys-X$_2$-Cys-X$_5$-Cys) distinct from all other known [4Fe-4S] proteins. Sequence conservation and the positive electrostatic potential of conserved regions identify a surface suitable for binding duplex B-DNA across the long axis of the enzyme, matching a 46 angstrom length of protected DNA. The primary role of the [4Fe-4S] cluster appears to involve positioning conserved basic residues for interaction with the DNA phosphate backbone. The crystallographically identified inhibitor binding region, which recognizes the damaged base thymine glycol, is a seven-residue β-hairpin (residues 113 to 119). Location and side chain orientation at the base of the inhibitor binding site implicate Glu$^{112}$ in the N-glycosylase mechanism and Lys$^{120}$ in the β-elimination mechanism. Overall, the structure reveals an unusual fold and a new biological function for [4Fe-4S] clusters and provides a structural basis for studying recognition of damaged DNA and the N-glycosylase and apurinic/apyrimidinic-lyase mechanisms.
doi_str_mv 10.1126/science.1411536
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6953995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2879982</jstor_id><sourcerecordid>2879982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-e73b00e5291c31921cf4f40dbf11d5eb9b03737529ecc575ee611d4683eebe873</originalsourceid><addsrcrecordid>eNqFkU1r20AQhpfSkDhuz72kIErpTc6u9kt7NG7cGEICSXsqZZHGI6IgaZ3d1cH59d1g4RxzGN7D88zAzBDyhdEFY4W6DNDiALhggjHJ1QcyY9TI3BSUfyQzSrnKS6rlGTkP4YnSxAw_JaeTPiOrZXR9C9lD9CPE0WPmmiw-Yvbzdpnd465qffZXrDEXD_-yq-Fl32OKrRtG6LAKmG02m0_kpKm6gJ-nnJM_66vfq-v85u7XZrW8yUEYFXPUvKYUZWEYcGYKBo1oBN3WDWNbibWpKddcJ44AUktElYBQJUessdR8Tr4d5roQW5s2jwiP4IYBIVplJDep5uTHQdp59zxiiLZvA2DXVQO6MVjNC11KVbwrMsWZKjVL4uVBBO9C8NjYnW_7yu8to_b1CXZ6gp2umjq-TqPHusftm3_k3ydeBai6xlcDtOGoCSUUNzRpFwftKUTnj7gotTFlwf8Dg_6Wog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16316871</pqid></control><display><type>article</type><title>Atomic Structure of the DNA Repair [4Fe-4S] Enzyme Endonuclease III</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Science Magazine</source><creator>Kuo, Che-Fu ; McRee, Duncan E. ; Fisher, Cindy L. ; O'Handley, Suzanne F. ; Cunningham, Richard P. ; Tainer, John A.</creator><creatorcontrib>Kuo, Che-Fu ; McRee, Duncan E. ; Fisher, Cindy L. ; O'Handley, Suzanne F. ; Cunningham, Richard P. ; Tainer, John A.</creatorcontrib><description>The crystal structure of the DNA repair enzyme endonuclease III, which recognizes and cleaves DNA at damaged bases, has been solved to 2.0 angstrom resolution with an R factor of 0.185. This iron-sulfur [4Fe-4S] enzyme is elongated and bilobal with a deep cleft separating two similarly sized domains: a novel, sequence-continuous, six-helix domain (residues 22 to 132) and a Greek-key, four-helix domain formed by the amino-terminal and three carboxyl-terminal helices (residues 1 to 21 and 133 to 211) together with the [4Fe-4S] cluster. The cluster is bound entirely within the carboxyl-terminal loop with a ligation pattern (Cys-X$_6$-Cys-X$_2$-Cys-X$_5$-Cys) distinct from all other known [4Fe-4S] proteins. Sequence conservation and the positive electrostatic potential of conserved regions identify a surface suitable for binding duplex B-DNA across the long axis of the enzyme, matching a 46 angstrom length of protected DNA. The primary role of the [4Fe-4S] cluster appears to involve positioning conserved basic residues for interaction with the DNA phosphate backbone. The crystallographically identified inhibitor binding region, which recognizes the damaged base thymine glycol, is a seven-residue β-hairpin (residues 113 to 119). Location and side chain orientation at the base of the inhibitor binding site implicate Glu$^{112}$ in the N-glycosylase mechanism and Lys$^{120}$ in the β-elimination mechanism. Overall, the structure reveals an unusual fold and a new biological function for [4Fe-4S] clusters and provides a structural basis for studying recognition of damaged DNA and the N-glycosylase and apurinic/apyrimidinic-lyase mechanisms.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1411536</identifier><identifier>PMID: 1411536</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>Analytical, structural and metabolic biochemistry ; Atoms ; Bacterial Proteins - ultrastructure ; Base Sequence ; BASIC BIOLOGICAL SCIENCES ; Binding sites ; Biochemistry ; Biological and medical sciences ; BIOLOGICAL FUNCTIONS ; BIOLOGICAL RECOVERY ; BIOLOGICAL REPAIR ; crystal structure ; Crystallography ; Cysteine - chemistry ; Deoxyribonuclease (Pyrimidine Dimer) ; deoxyribonuclease III ; DNA ; DNA damage ; DNA REPAIR ; DNA SEQUENCING ; DNA-ASE ; DNA-Binding Proteins - ultrastructure ; Electrical potential ; Endodeoxyribonucleases - ultrastructure ; ENDONUCLEASES ; ENZYMES ; Enzymes and enzyme inhibitors ; Escherichia coli ; ESTERASES ; Fundamental and applied biological sciences. Psychology ; GENES ; Glycols ; HYDROLASES ; Iron-Sulfur Proteins - ultrastructure ; Isomerases ; Models, Molecular ; Molecular Sequence Data ; MOLECULAR STRUCTURE ; Molecules ; Oligodeoxyribonucleotides - metabolism ; ORGANIC COMPOUNDS ; PHOSPHODIESTERASES ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; PROTEINS ; REPAIR ; STRUCTURAL CHEMICAL ANALYSIS 550200 -- Biochemistry ; X-Ray Diffraction</subject><ispartof>Science (American Association for the Advancement of Science), 1992-10, Vol.258 (5081), p.434-440</ispartof><rights>Copyright 1992 American Association for the Advancement of Science</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-e73b00e5291c31921cf4f40dbf11d5eb9b03737529ecc575ee611d4683eebe873</citedby><cites>FETCH-LOGICAL-c496t-e73b00e5291c31921cf4f40dbf11d5eb9b03737529ecc575ee611d4683eebe873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2879982$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2879982$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4646390$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1411536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6953995$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuo, Che-Fu</creatorcontrib><creatorcontrib>McRee, Duncan E.</creatorcontrib><creatorcontrib>Fisher, Cindy L.</creatorcontrib><creatorcontrib>O'Handley, Suzanne F.</creatorcontrib><creatorcontrib>Cunningham, Richard P.</creatorcontrib><creatorcontrib>Tainer, John A.</creatorcontrib><title>Atomic Structure of the DNA Repair [4Fe-4S] Enzyme Endonuclease III</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The crystal structure of the DNA repair enzyme endonuclease III, which recognizes and cleaves DNA at damaged bases, has been solved to 2.0 angstrom resolution with an R factor of 0.185. This iron-sulfur [4Fe-4S] enzyme is elongated and bilobal with a deep cleft separating two similarly sized domains: a novel, sequence-continuous, six-helix domain (residues 22 to 132) and a Greek-key, four-helix domain formed by the amino-terminal and three carboxyl-terminal helices (residues 1 to 21 and 133 to 211) together with the [4Fe-4S] cluster. The cluster is bound entirely within the carboxyl-terminal loop with a ligation pattern (Cys-X$_6$-Cys-X$_2$-Cys-X$_5$-Cys) distinct from all other known [4Fe-4S] proteins. Sequence conservation and the positive electrostatic potential of conserved regions identify a surface suitable for binding duplex B-DNA across the long axis of the enzyme, matching a 46 angstrom length of protected DNA. The primary role of the [4Fe-4S] cluster appears to involve positioning conserved basic residues for interaction with the DNA phosphate backbone. The crystallographically identified inhibitor binding region, which recognizes the damaged base thymine glycol, is a seven-residue β-hairpin (residues 113 to 119). Location and side chain orientation at the base of the inhibitor binding site implicate Glu$^{112}$ in the N-glycosylase mechanism and Lys$^{120}$ in the β-elimination mechanism. Overall, the structure reveals an unusual fold and a new biological function for [4Fe-4S] clusters and provides a structural basis for studying recognition of damaged DNA and the N-glycosylase and apurinic/apyrimidinic-lyase mechanisms.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Atoms</subject><subject>Bacterial Proteins - ultrastructure</subject><subject>Base Sequence</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>BIOLOGICAL FUNCTIONS</subject><subject>BIOLOGICAL RECOVERY</subject><subject>BIOLOGICAL REPAIR</subject><subject>crystal structure</subject><subject>Crystallography</subject><subject>Cysteine - chemistry</subject><subject>Deoxyribonuclease (Pyrimidine Dimer)</subject><subject>deoxyribonuclease III</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA REPAIR</subject><subject>DNA SEQUENCING</subject><subject>DNA-ASE</subject><subject>DNA-Binding Proteins - ultrastructure</subject><subject>Electrical potential</subject><subject>Endodeoxyribonucleases - ultrastructure</subject><subject>ENDONUCLEASES</subject><subject>ENZYMES</subject><subject>Enzymes and enzyme inhibitors</subject><subject>Escherichia coli</subject><subject>ESTERASES</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GENES</subject><subject>Glycols</subject><subject>HYDROLASES</subject><subject>Iron-Sulfur Proteins - ultrastructure</subject><subject>Isomerases</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>MOLECULAR STRUCTURE</subject><subject>Molecules</subject><subject>Oligodeoxyribonucleotides - metabolism</subject><subject>ORGANIC COMPOUNDS</subject><subject>PHOSPHODIESTERASES</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>PROTEINS</subject><subject>REPAIR</subject><subject>STRUCTURAL CHEMICAL ANALYSIS 550200 -- Biochemistry</subject><subject>X-Ray Diffraction</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r20AQhpfSkDhuz72kIErpTc6u9kt7NG7cGEICSXsqZZHGI6IgaZ3d1cH59d1g4RxzGN7D88zAzBDyhdEFY4W6DNDiALhggjHJ1QcyY9TI3BSUfyQzSrnKS6rlGTkP4YnSxAw_JaeTPiOrZXR9C9lD9CPE0WPmmiw-Yvbzdpnd465qffZXrDEXD_-yq-Fl32OKrRtG6LAKmG02m0_kpKm6gJ-nnJM_66vfq-v85u7XZrW8yUEYFXPUvKYUZWEYcGYKBo1oBN3WDWNbibWpKddcJ44AUktElYBQJUessdR8Tr4d5roQW5s2jwiP4IYBIVplJDep5uTHQdp59zxiiLZvA2DXVQO6MVjNC11KVbwrMsWZKjVL4uVBBO9C8NjYnW_7yu8to_b1CXZ6gp2umjq-TqPHusftm3_k3ydeBai6xlcDtOGoCSUUNzRpFwftKUTnj7gotTFlwf8Dg_6Wog</recordid><startdate>19921016</startdate><enddate>19921016</enddate><creator>Kuo, Che-Fu</creator><creator>McRee, Duncan E.</creator><creator>Fisher, Cindy L.</creator><creator>O'Handley, Suzanne F.</creator><creator>Cunningham, Richard P.</creator><creator>Tainer, John A.</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M81</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19921016</creationdate><title>Atomic Structure of the DNA Repair [4Fe-4S] Enzyme Endonuclease III</title><author>Kuo, Che-Fu ; McRee, Duncan E. ; Fisher, Cindy L. ; O'Handley, Suzanne F. ; Cunningham, Richard P. ; Tainer, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-e73b00e5291c31921cf4f40dbf11d5eb9b03737529ecc575ee611d4683eebe873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Atoms</topic><topic>Bacterial Proteins - ultrastructure</topic><topic>Base Sequence</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>BIOLOGICAL FUNCTIONS</topic><topic>BIOLOGICAL RECOVERY</topic><topic>BIOLOGICAL REPAIR</topic><topic>crystal structure</topic><topic>Crystallography</topic><topic>Cysteine - chemistry</topic><topic>Deoxyribonuclease (Pyrimidine Dimer)</topic><topic>deoxyribonuclease III</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA REPAIR</topic><topic>DNA SEQUENCING</topic><topic>DNA-ASE</topic><topic>DNA-Binding Proteins - ultrastructure</topic><topic>Electrical potential</topic><topic>Endodeoxyribonucleases - ultrastructure</topic><topic>ENDONUCLEASES</topic><topic>ENZYMES</topic><topic>Enzymes and enzyme inhibitors</topic><topic>Escherichia coli</topic><topic>ESTERASES</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GENES</topic><topic>Glycols</topic><topic>HYDROLASES</topic><topic>Iron-Sulfur Proteins - ultrastructure</topic><topic>Isomerases</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>MOLECULAR STRUCTURE</topic><topic>Molecules</topic><topic>Oligodeoxyribonucleotides - metabolism</topic><topic>ORGANIC COMPOUNDS</topic><topic>PHOSPHODIESTERASES</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>PROTEINS</topic><topic>REPAIR</topic><topic>STRUCTURAL CHEMICAL ANALYSIS 550200 -- Biochemistry</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuo, Che-Fu</creatorcontrib><creatorcontrib>McRee, Duncan E.</creatorcontrib><creatorcontrib>Fisher, Cindy L.</creatorcontrib><creatorcontrib>O'Handley, Suzanne F.</creatorcontrib><creatorcontrib>Cunningham, Richard P.</creatorcontrib><creatorcontrib>Tainer, John A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuo, Che-Fu</au><au>McRee, Duncan E.</au><au>Fisher, Cindy L.</au><au>O'Handley, Suzanne F.</au><au>Cunningham, Richard P.</au><au>Tainer, John A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic Structure of the DNA Repair [4Fe-4S] Enzyme Endonuclease III</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1992-10-16</date><risdate>1992</risdate><volume>258</volume><issue>5081</issue><spage>434</spage><epage>440</epage><pages>434-440</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The crystal structure of the DNA repair enzyme endonuclease III, which recognizes and cleaves DNA at damaged bases, has been solved to 2.0 angstrom resolution with an R factor of 0.185. This iron-sulfur [4Fe-4S] enzyme is elongated and bilobal with a deep cleft separating two similarly sized domains: a novel, sequence-continuous, six-helix domain (residues 22 to 132) and a Greek-key, four-helix domain formed by the amino-terminal and three carboxyl-terminal helices (residues 1 to 21 and 133 to 211) together with the [4Fe-4S] cluster. The cluster is bound entirely within the carboxyl-terminal loop with a ligation pattern (Cys-X$_6$-Cys-X$_2$-Cys-X$_5$-Cys) distinct from all other known [4Fe-4S] proteins. Sequence conservation and the positive electrostatic potential of conserved regions identify a surface suitable for binding duplex B-DNA across the long axis of the enzyme, matching a 46 angstrom length of protected DNA. The primary role of the [4Fe-4S] cluster appears to involve positioning conserved basic residues for interaction with the DNA phosphate backbone. The crystallographically identified inhibitor binding region, which recognizes the damaged base thymine glycol, is a seven-residue β-hairpin (residues 113 to 119). Location and side chain orientation at the base of the inhibitor binding site implicate Glu$^{112}$ in the N-glycosylase mechanism and Lys$^{120}$ in the β-elimination mechanism. Overall, the structure reveals an unusual fold and a new biological function for [4Fe-4S] clusters and provides a structural basis for studying recognition of damaged DNA and the N-glycosylase and apurinic/apyrimidinic-lyase mechanisms.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>1411536</pmid><doi>10.1126/science.1411536</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1992-10, Vol.258 (5081), p.434-440
issn 0036-8075
1095-9203
language eng
recordid cdi_osti_scitechconnect_6953995
source Jstor Complete Legacy; MEDLINE; Science Magazine
subjects Analytical, structural and metabolic biochemistry
Atoms
Bacterial Proteins - ultrastructure
Base Sequence
BASIC BIOLOGICAL SCIENCES
Binding sites
Biochemistry
Biological and medical sciences
BIOLOGICAL FUNCTIONS
BIOLOGICAL RECOVERY
BIOLOGICAL REPAIR
crystal structure
Crystallography
Cysteine - chemistry
Deoxyribonuclease (Pyrimidine Dimer)
deoxyribonuclease III
DNA
DNA damage
DNA REPAIR
DNA SEQUENCING
DNA-ASE
DNA-Binding Proteins - ultrastructure
Electrical potential
Endodeoxyribonucleases - ultrastructure
ENDONUCLEASES
ENZYMES
Enzymes and enzyme inhibitors
Escherichia coli
ESTERASES
Fundamental and applied biological sciences. Psychology
GENES
Glycols
HYDROLASES
Iron-Sulfur Proteins - ultrastructure
Isomerases
Models, Molecular
Molecular Sequence Data
MOLECULAR STRUCTURE
Molecules
Oligodeoxyribonucleotides - metabolism
ORGANIC COMPOUNDS
PHOSPHODIESTERASES
Protein Conformation
Protein Structure, Secondary
Protein Structure, Tertiary
PROTEINS
REPAIR
STRUCTURAL CHEMICAL ANALYSIS 550200 -- Biochemistry
X-Ray Diffraction
title Atomic Structure of the DNA Repair [4Fe-4S] Enzyme Endonuclease III
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20Structure%20of%20the%20DNA%20Repair%20%5B4Fe-4S%5D%20Enzyme%20Endonuclease%20III&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kuo,%20Che-Fu&rft.date=1992-10-16&rft.volume=258&rft.issue=5081&rft.spage=434&rft.epage=440&rft.pages=434-440&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1411536&rft_dat=%3Cjstor_osti_%3E2879982%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16316871&rft_id=info:pmid/1411536&rft_jstor_id=2879982&rfr_iscdi=true