Atomic Structure of the DNA Repair [4Fe-4S] Enzyme Endonuclease III
The crystal structure of the DNA repair enzyme endonuclease III, which recognizes and cleaves DNA at damaged bases, has been solved to 2.0 angstrom resolution with an R factor of 0.185. This iron-sulfur [4Fe-4S] enzyme is elongated and bilobal with a deep cleft separating two similarly sized domains...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 1992-10, Vol.258 (5081), p.434-440 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 440 |
---|---|
container_issue | 5081 |
container_start_page | 434 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 258 |
creator | Kuo, Che-Fu McRee, Duncan E. Fisher, Cindy L. O'Handley, Suzanne F. Cunningham, Richard P. Tainer, John A. |
description | The crystal structure of the DNA repair enzyme endonuclease III, which recognizes and cleaves DNA at damaged bases, has been solved to 2.0 angstrom resolution with an R factor of 0.185. This iron-sulfur [4Fe-4S] enzyme is elongated and bilobal with a deep cleft separating two similarly sized domains: a novel, sequence-continuous, six-helix domain (residues 22 to 132) and a Greek-key, four-helix domain formed by the amino-terminal and three carboxyl-terminal helices (residues 1 to 21 and 133 to 211) together with the [4Fe-4S] cluster. The cluster is bound entirely within the carboxyl-terminal loop with a ligation pattern (Cys-X$_6$-Cys-X$_2$-Cys-X$_5$-Cys) distinct from all other known [4Fe-4S] proteins. Sequence conservation and the positive electrostatic potential of conserved regions identify a surface suitable for binding duplex B-DNA across the long axis of the enzyme, matching a 46 angstrom length of protected DNA. The primary role of the [4Fe-4S] cluster appears to involve positioning conserved basic residues for interaction with the DNA phosphate backbone. The crystallographically identified inhibitor binding region, which recognizes the damaged base thymine glycol, is a seven-residue β-hairpin (residues 113 to 119). Location and side chain orientation at the base of the inhibitor binding site implicate Glu$^{112}$ in the N-glycosylase mechanism and Lys$^{120}$ in the β-elimination mechanism. Overall, the structure reveals an unusual fold and a new biological function for [4Fe-4S] clusters and provides a structural basis for studying recognition of damaged DNA and the N-glycosylase and apurinic/apyrimidinic-lyase mechanisms. |
doi_str_mv | 10.1126/science.1411536 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6953995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2879982</jstor_id><sourcerecordid>2879982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-e73b00e5291c31921cf4f40dbf11d5eb9b03737529ecc575ee611d4683eebe873</originalsourceid><addsrcrecordid>eNqFkU1r20AQhpfSkDhuz72kIErpTc6u9kt7NG7cGEICSXsqZZHGI6IgaZ3d1cH59d1g4RxzGN7D88zAzBDyhdEFY4W6DNDiALhggjHJ1QcyY9TI3BSUfyQzSrnKS6rlGTkP4YnSxAw_JaeTPiOrZXR9C9lD9CPE0WPmmiw-Yvbzdpnd465qffZXrDEXD_-yq-Fl32OKrRtG6LAKmG02m0_kpKm6gJ-nnJM_66vfq-v85u7XZrW8yUEYFXPUvKYUZWEYcGYKBo1oBN3WDWNbibWpKddcJ44AUktElYBQJUessdR8Tr4d5roQW5s2jwiP4IYBIVplJDep5uTHQdp59zxiiLZvA2DXVQO6MVjNC11KVbwrMsWZKjVL4uVBBO9C8NjYnW_7yu8to_b1CXZ6gp2umjq-TqPHusftm3_k3ydeBai6xlcDtOGoCSUUNzRpFwftKUTnj7gotTFlwf8Dg_6Wog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16316871</pqid></control><display><type>article</type><title>Atomic Structure of the DNA Repair [4Fe-4S] Enzyme Endonuclease III</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Science Magazine</source><creator>Kuo, Che-Fu ; McRee, Duncan E. ; Fisher, Cindy L. ; O'Handley, Suzanne F. ; Cunningham, Richard P. ; Tainer, John A.</creator><creatorcontrib>Kuo, Che-Fu ; McRee, Duncan E. ; Fisher, Cindy L. ; O'Handley, Suzanne F. ; Cunningham, Richard P. ; Tainer, John A.</creatorcontrib><description>The crystal structure of the DNA repair enzyme endonuclease III, which recognizes and cleaves DNA at damaged bases, has been solved to 2.0 angstrom resolution with an R factor of 0.185. This iron-sulfur [4Fe-4S] enzyme is elongated and bilobal with a deep cleft separating two similarly sized domains: a novel, sequence-continuous, six-helix domain (residues 22 to 132) and a Greek-key, four-helix domain formed by the amino-terminal and three carboxyl-terminal helices (residues 1 to 21 and 133 to 211) together with the [4Fe-4S] cluster. The cluster is bound entirely within the carboxyl-terminal loop with a ligation pattern (Cys-X$_6$-Cys-X$_2$-Cys-X$_5$-Cys) distinct from all other known [4Fe-4S] proteins. Sequence conservation and the positive electrostatic potential of conserved regions identify a surface suitable for binding duplex B-DNA across the long axis of the enzyme, matching a 46 angstrom length of protected DNA. The primary role of the [4Fe-4S] cluster appears to involve positioning conserved basic residues for interaction with the DNA phosphate backbone. The crystallographically identified inhibitor binding region, which recognizes the damaged base thymine glycol, is a seven-residue β-hairpin (residues 113 to 119). Location and side chain orientation at the base of the inhibitor binding site implicate Glu$^{112}$ in the N-glycosylase mechanism and Lys$^{120}$ in the β-elimination mechanism. Overall, the structure reveals an unusual fold and a new biological function for [4Fe-4S] clusters and provides a structural basis for studying recognition of damaged DNA and the N-glycosylase and apurinic/apyrimidinic-lyase mechanisms.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1411536</identifier><identifier>PMID: 1411536</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>Analytical, structural and metabolic biochemistry ; Atoms ; Bacterial Proteins - ultrastructure ; Base Sequence ; BASIC BIOLOGICAL SCIENCES ; Binding sites ; Biochemistry ; Biological and medical sciences ; BIOLOGICAL FUNCTIONS ; BIOLOGICAL RECOVERY ; BIOLOGICAL REPAIR ; crystal structure ; Crystallography ; Cysteine - chemistry ; Deoxyribonuclease (Pyrimidine Dimer) ; deoxyribonuclease III ; DNA ; DNA damage ; DNA REPAIR ; DNA SEQUENCING ; DNA-ASE ; DNA-Binding Proteins - ultrastructure ; Electrical potential ; Endodeoxyribonucleases - ultrastructure ; ENDONUCLEASES ; ENZYMES ; Enzymes and enzyme inhibitors ; Escherichia coli ; ESTERASES ; Fundamental and applied biological sciences. Psychology ; GENES ; Glycols ; HYDROLASES ; Iron-Sulfur Proteins - ultrastructure ; Isomerases ; Models, Molecular ; Molecular Sequence Data ; MOLECULAR STRUCTURE ; Molecules ; Oligodeoxyribonucleotides - metabolism ; ORGANIC COMPOUNDS ; PHOSPHODIESTERASES ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; PROTEINS ; REPAIR ; STRUCTURAL CHEMICAL ANALYSIS 550200 -- Biochemistry ; X-Ray Diffraction</subject><ispartof>Science (American Association for the Advancement of Science), 1992-10, Vol.258 (5081), p.434-440</ispartof><rights>Copyright 1992 American Association for the Advancement of Science</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-e73b00e5291c31921cf4f40dbf11d5eb9b03737529ecc575ee611d4683eebe873</citedby><cites>FETCH-LOGICAL-c496t-e73b00e5291c31921cf4f40dbf11d5eb9b03737529ecc575ee611d4683eebe873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2879982$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2879982$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4646390$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1411536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6953995$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuo, Che-Fu</creatorcontrib><creatorcontrib>McRee, Duncan E.</creatorcontrib><creatorcontrib>Fisher, Cindy L.</creatorcontrib><creatorcontrib>O'Handley, Suzanne F.</creatorcontrib><creatorcontrib>Cunningham, Richard P.</creatorcontrib><creatorcontrib>Tainer, John A.</creatorcontrib><title>Atomic Structure of the DNA Repair [4Fe-4S] Enzyme Endonuclease III</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The crystal structure of the DNA repair enzyme endonuclease III, which recognizes and cleaves DNA at damaged bases, has been solved to 2.0 angstrom resolution with an R factor of 0.185. This iron-sulfur [4Fe-4S] enzyme is elongated and bilobal with a deep cleft separating two similarly sized domains: a novel, sequence-continuous, six-helix domain (residues 22 to 132) and a Greek-key, four-helix domain formed by the amino-terminal and three carboxyl-terminal helices (residues 1 to 21 and 133 to 211) together with the [4Fe-4S] cluster. The cluster is bound entirely within the carboxyl-terminal loop with a ligation pattern (Cys-X$_6$-Cys-X$_2$-Cys-X$_5$-Cys) distinct from all other known [4Fe-4S] proteins. Sequence conservation and the positive electrostatic potential of conserved regions identify a surface suitable for binding duplex B-DNA across the long axis of the enzyme, matching a 46 angstrom length of protected DNA. The primary role of the [4Fe-4S] cluster appears to involve positioning conserved basic residues for interaction with the DNA phosphate backbone. The crystallographically identified inhibitor binding region, which recognizes the damaged base thymine glycol, is a seven-residue β-hairpin (residues 113 to 119). Location and side chain orientation at the base of the inhibitor binding site implicate Glu$^{112}$ in the N-glycosylase mechanism and Lys$^{120}$ in the β-elimination mechanism. Overall, the structure reveals an unusual fold and a new biological function for [4Fe-4S] clusters and provides a structural basis for studying recognition of damaged DNA and the N-glycosylase and apurinic/apyrimidinic-lyase mechanisms.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Atoms</subject><subject>Bacterial Proteins - ultrastructure</subject><subject>Base Sequence</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>BIOLOGICAL FUNCTIONS</subject><subject>BIOLOGICAL RECOVERY</subject><subject>BIOLOGICAL REPAIR</subject><subject>crystal structure</subject><subject>Crystallography</subject><subject>Cysteine - chemistry</subject><subject>Deoxyribonuclease (Pyrimidine Dimer)</subject><subject>deoxyribonuclease III</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA REPAIR</subject><subject>DNA SEQUENCING</subject><subject>DNA-ASE</subject><subject>DNA-Binding Proteins - ultrastructure</subject><subject>Electrical potential</subject><subject>Endodeoxyribonucleases - ultrastructure</subject><subject>ENDONUCLEASES</subject><subject>ENZYMES</subject><subject>Enzymes and enzyme inhibitors</subject><subject>Escherichia coli</subject><subject>ESTERASES</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GENES</subject><subject>Glycols</subject><subject>HYDROLASES</subject><subject>Iron-Sulfur Proteins - ultrastructure</subject><subject>Isomerases</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>MOLECULAR STRUCTURE</subject><subject>Molecules</subject><subject>Oligodeoxyribonucleotides - metabolism</subject><subject>ORGANIC COMPOUNDS</subject><subject>PHOSPHODIESTERASES</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>PROTEINS</subject><subject>REPAIR</subject><subject>STRUCTURAL CHEMICAL ANALYSIS 550200 -- Biochemistry</subject><subject>X-Ray Diffraction</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r20AQhpfSkDhuz72kIErpTc6u9kt7NG7cGEICSXsqZZHGI6IgaZ3d1cH59d1g4RxzGN7D88zAzBDyhdEFY4W6DNDiALhggjHJ1QcyY9TI3BSUfyQzSrnKS6rlGTkP4YnSxAw_JaeTPiOrZXR9C9lD9CPE0WPmmiw-Yvbzdpnd465qffZXrDEXD_-yq-Fl32OKrRtG6LAKmG02m0_kpKm6gJ-nnJM_66vfq-v85u7XZrW8yUEYFXPUvKYUZWEYcGYKBo1oBN3WDWNbibWpKddcJ44AUktElYBQJUessdR8Tr4d5roQW5s2jwiP4IYBIVplJDep5uTHQdp59zxiiLZvA2DXVQO6MVjNC11KVbwrMsWZKjVL4uVBBO9C8NjYnW_7yu8to_b1CXZ6gp2umjq-TqPHusftm3_k3ydeBai6xlcDtOGoCSUUNzRpFwftKUTnj7gotTFlwf8Dg_6Wog</recordid><startdate>19921016</startdate><enddate>19921016</enddate><creator>Kuo, Che-Fu</creator><creator>McRee, Duncan E.</creator><creator>Fisher, Cindy L.</creator><creator>O'Handley, Suzanne F.</creator><creator>Cunningham, Richard P.</creator><creator>Tainer, John A.</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M81</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19921016</creationdate><title>Atomic Structure of the DNA Repair [4Fe-4S] Enzyme Endonuclease III</title><author>Kuo, Che-Fu ; McRee, Duncan E. ; Fisher, Cindy L. ; O'Handley, Suzanne F. ; Cunningham, Richard P. ; Tainer, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-e73b00e5291c31921cf4f40dbf11d5eb9b03737529ecc575ee611d4683eebe873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Atoms</topic><topic>Bacterial Proteins - ultrastructure</topic><topic>Base Sequence</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>BIOLOGICAL FUNCTIONS</topic><topic>BIOLOGICAL RECOVERY</topic><topic>BIOLOGICAL REPAIR</topic><topic>crystal structure</topic><topic>Crystallography</topic><topic>Cysteine - chemistry</topic><topic>Deoxyribonuclease (Pyrimidine Dimer)</topic><topic>deoxyribonuclease III</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA REPAIR</topic><topic>DNA SEQUENCING</topic><topic>DNA-ASE</topic><topic>DNA-Binding Proteins - ultrastructure</topic><topic>Electrical potential</topic><topic>Endodeoxyribonucleases - ultrastructure</topic><topic>ENDONUCLEASES</topic><topic>ENZYMES</topic><topic>Enzymes and enzyme inhibitors</topic><topic>Escherichia coli</topic><topic>ESTERASES</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GENES</topic><topic>Glycols</topic><topic>HYDROLASES</topic><topic>Iron-Sulfur Proteins - ultrastructure</topic><topic>Isomerases</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>MOLECULAR STRUCTURE</topic><topic>Molecules</topic><topic>Oligodeoxyribonucleotides - metabolism</topic><topic>ORGANIC COMPOUNDS</topic><topic>PHOSPHODIESTERASES</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>PROTEINS</topic><topic>REPAIR</topic><topic>STRUCTURAL CHEMICAL ANALYSIS 550200 -- Biochemistry</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuo, Che-Fu</creatorcontrib><creatorcontrib>McRee, Duncan E.</creatorcontrib><creatorcontrib>Fisher, Cindy L.</creatorcontrib><creatorcontrib>O'Handley, Suzanne F.</creatorcontrib><creatorcontrib>Cunningham, Richard P.</creatorcontrib><creatorcontrib>Tainer, John A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuo, Che-Fu</au><au>McRee, Duncan E.</au><au>Fisher, Cindy L.</au><au>O'Handley, Suzanne F.</au><au>Cunningham, Richard P.</au><au>Tainer, John A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic Structure of the DNA Repair [4Fe-4S] Enzyme Endonuclease III</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1992-10-16</date><risdate>1992</risdate><volume>258</volume><issue>5081</issue><spage>434</spage><epage>440</epage><pages>434-440</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The crystal structure of the DNA repair enzyme endonuclease III, which recognizes and cleaves DNA at damaged bases, has been solved to 2.0 angstrom resolution with an R factor of 0.185. This iron-sulfur [4Fe-4S] enzyme is elongated and bilobal with a deep cleft separating two similarly sized domains: a novel, sequence-continuous, six-helix domain (residues 22 to 132) and a Greek-key, four-helix domain formed by the amino-terminal and three carboxyl-terminal helices (residues 1 to 21 and 133 to 211) together with the [4Fe-4S] cluster. The cluster is bound entirely within the carboxyl-terminal loop with a ligation pattern (Cys-X$_6$-Cys-X$_2$-Cys-X$_5$-Cys) distinct from all other known [4Fe-4S] proteins. Sequence conservation and the positive electrostatic potential of conserved regions identify a surface suitable for binding duplex B-DNA across the long axis of the enzyme, matching a 46 angstrom length of protected DNA. The primary role of the [4Fe-4S] cluster appears to involve positioning conserved basic residues for interaction with the DNA phosphate backbone. The crystallographically identified inhibitor binding region, which recognizes the damaged base thymine glycol, is a seven-residue β-hairpin (residues 113 to 119). Location and side chain orientation at the base of the inhibitor binding site implicate Glu$^{112}$ in the N-glycosylase mechanism and Lys$^{120}$ in the β-elimination mechanism. Overall, the structure reveals an unusual fold and a new biological function for [4Fe-4S] clusters and provides a structural basis for studying recognition of damaged DNA and the N-glycosylase and apurinic/apyrimidinic-lyase mechanisms.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>1411536</pmid><doi>10.1126/science.1411536</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 1992-10, Vol.258 (5081), p.434-440 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_6953995 |
source | Jstor Complete Legacy; MEDLINE; Science Magazine |
subjects | Analytical, structural and metabolic biochemistry Atoms Bacterial Proteins - ultrastructure Base Sequence BASIC BIOLOGICAL SCIENCES Binding sites Biochemistry Biological and medical sciences BIOLOGICAL FUNCTIONS BIOLOGICAL RECOVERY BIOLOGICAL REPAIR crystal structure Crystallography Cysteine - chemistry Deoxyribonuclease (Pyrimidine Dimer) deoxyribonuclease III DNA DNA damage DNA REPAIR DNA SEQUENCING DNA-ASE DNA-Binding Proteins - ultrastructure Electrical potential Endodeoxyribonucleases - ultrastructure ENDONUCLEASES ENZYMES Enzymes and enzyme inhibitors Escherichia coli ESTERASES Fundamental and applied biological sciences. Psychology GENES Glycols HYDROLASES Iron-Sulfur Proteins - ultrastructure Isomerases Models, Molecular Molecular Sequence Data MOLECULAR STRUCTURE Molecules Oligodeoxyribonucleotides - metabolism ORGANIC COMPOUNDS PHOSPHODIESTERASES Protein Conformation Protein Structure, Secondary Protein Structure, Tertiary PROTEINS REPAIR STRUCTURAL CHEMICAL ANALYSIS 550200 -- Biochemistry X-Ray Diffraction |
title | Atomic Structure of the DNA Repair [4Fe-4S] Enzyme Endonuclease III |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20Structure%20of%20the%20DNA%20Repair%20%5B4Fe-4S%5D%20Enzyme%20Endonuclease%20III&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kuo,%20Che-Fu&rft.date=1992-10-16&rft.volume=258&rft.issue=5081&rft.spage=434&rft.epage=440&rft.pages=434-440&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1411536&rft_dat=%3Cjstor_osti_%3E2879982%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16316871&rft_id=info:pmid/1411536&rft_jstor_id=2879982&rfr_iscdi=true |