The origin of the near-infrared emission in palomar green quasars : the case for hot dust
This paper uses the variation with redshift of the near-infrared colors of the Palomar Green Bright Quasars as the basis for an analysis of the origin of their infrared light. Comparison of the data with simple models of the continuum, appropriately redshifted, show that the flux ratios start to dec...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 1990-05, Vol.354 (1), p.148-157 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper uses the variation with redshift of the near-infrared colors of the Palomar Green Bright Quasars as the basis for an analysis of the origin of their infrared light. Comparison of the data with simple models of the continuum, appropriately redshifted, show that the flux ratios start to decline when blue optical emission is redshifted into the infrared bandpasses. The rise in vFv(2.2 microns)/vFv(1.65 microns) is attributable to the declining importance of starlight. The range of vFv(2.2 microns)/vFv(1.65 microns) at maximum is attributable to a nonthermal emission only if it has an unusually steep range of spectra, with alpha = -1.7 on average and alpha = -2.2 in the extreme. At the same time, this emission does not vary and is unpolarized. Such a combination of properties has not been seen in any known nonthermal source. Emission from hot dust, probably from a broad range of temperatures centered near 1000 K, is a much simpler interpretation. It supplies on average 25 percent of the total 2.2 microns light at z = 0 and 35 percent in the extreme. 42 refs. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1086/168674 |