Integral equation theory of polymer blends : numerical investigation of molecular closure approximations

The thermodynamics of symmetric polymer blends is investigated using the polymer reference interaction site model integral equation theory with the new molecular closures presented in the previous paper. In contrast to the atomic mean spherical approximation reported earlier by Schweizer and Curro [...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 1993-06, Vol.98 (11), p.9080-9093
Hauptverfasser: YETHIRAJ, A, SCHWEIZER, K. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9093
container_issue 11
container_start_page 9080
container_title The Journal of chemical physics
container_volume 98
creator YETHIRAJ, A
SCHWEIZER, K. S
description The thermodynamics of symmetric polymer blends is investigated using the polymer reference interaction site model integral equation theory with the new molecular closures presented in the previous paper. In contrast to the atomic mean spherical approximation reported earlier by Schweizer and Curro [J. Chem. Phys. 91, 5059 (1989); Chem. Phys. 149, 105 (1990)] (in which the critical temperature is proportional to the square root of the degree of polymerization), the molecular closures predict a linear dependence of the critical temperature on the degree of polymerization, in agreement with classical mean field theory. Detailed numerical calculations using the reference molecular mean spherical approximation (R-MMSA) and the reference molecular Percus–Yevick (R-MPY) closures are presented for the intermolecular structure and effective chi parameter in symmetric blends of semiflexible chains. For the symmetric blend, the R-MMSA closure is almost an integral equation realization of mean field theory, consistent with the analytical results presented in the previous paper. With the R-MPY closure, at low densities, the effective chi parameter is significantly renormalized down from its mean field value and displays a strong composition dependence. As the density is increased, both the renormalization of the effective chi parameter and its composition dependence become weaker. These trends are consistent with recent computer simulations. The influence of chain aspect ratio and the precise choice of intermolecular potentials on blend thermodynamics and phase separation are also explored. With the exception of the composition dependence of the effective chi parameter in the R-MPY theory, the analytical thread calculations are shown to be in qualitative, and sometimes quantitative, agreement with all the numerical results for symmetric blends.
doi_str_mv 10.1063/1.464466
format Article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6674683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4834825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-dfecf8f6698406722ab7b5b74f0f2b382511b7907c79fd1fe05aab5fafbf9b7d3</originalsourceid><addsrcrecordid>eNo90E1LxDAQBuAgCq6r4E8I4sFL10mbJq03WfxYWPCi55KkyW6lm9QkFfvvjVY8DQPPDO8MQpcEVgRYcUtWlFHK2BFaEKjqjLMajtECICdZzYCdorMQ3gGA8Jwu0H5jo9550WP9MYrYOYvjXjs_YWfw4PrpoD2WvbZtwHfYjqntVNKd_dQhdrt5JNmD67Uae-Gx6l0YvcZiGLz76g6_JJyjEyP6oC_-6hK9PT68rp-z7cvTZn2_zVRekZi1RitTGcbqigLjeS4kl6Xk1IDJZVHlJSGS18AVr01LjIZSCFkaYaSpJW-LJbqa97oUrwmqi1rtlbNWq9gwximrioRuZqS8C8Fr0ww-BfVTQ6D5eWNDmvmNiV7PdBAhHW68sKoL_55WBU2him-5sXQD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integral equation theory of polymer blends : numerical investigation of molecular closure approximations</title><source>AIP Digital Archive</source><creator>YETHIRAJ, A ; SCHWEIZER, K. S</creator><creatorcontrib>YETHIRAJ, A ; SCHWEIZER, K. S</creatorcontrib><description>The thermodynamics of symmetric polymer blends is investigated using the polymer reference interaction site model integral equation theory with the new molecular closures presented in the previous paper. In contrast to the atomic mean spherical approximation reported earlier by Schweizer and Curro [J. Chem. Phys. 91, 5059 (1989); Chem. Phys. 149, 105 (1990)] (in which the critical temperature is proportional to the square root of the degree of polymerization), the molecular closures predict a linear dependence of the critical temperature on the degree of polymerization, in agreement with classical mean field theory. Detailed numerical calculations using the reference molecular mean spherical approximation (R-MMSA) and the reference molecular Percus–Yevick (R-MPY) closures are presented for the intermolecular structure and effective chi parameter in symmetric blends of semiflexible chains. For the symmetric blend, the R-MMSA closure is almost an integral equation realization of mean field theory, consistent with the analytical results presented in the previous paper. With the R-MPY closure, at low densities, the effective chi parameter is significantly renormalized down from its mean field value and displays a strong composition dependence. As the density is increased, both the renormalization of the effective chi parameter and its composition dependence become weaker. These trends are consistent with recent computer simulations. The influence of chain aspect ratio and the precise choice of intermolecular potentials on blend thermodynamics and phase separation are also explored. With the exception of the composition dependence of the effective chi parameter in the R-MPY theory, the analytical thread calculations are shown to be in qualitative, and sometimes quantitative, agreement with all the numerical results for symmetric blends.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.464466</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>Applied sciences ; ASPECT RATIO ; CHAINS ; CHEMICAL COMPOSITION ; DISPERSIONS ; EQUATIONS ; Exact sciences and technology ; INTEGRAL EQUATIONS ; INTERMOLECULAR FORCES ; MATERIALS SCIENCE ; MIXTURES 360606 -- Other Materials-- Physical Properties-- (1992-) ; MOLECULES ; NUMERICAL SOLUTION ; Organic polymers ; Physicochemistry of polymers ; POLYMERS ; Properties and characterization ; SOLUTIONS ; Thermal and thermodynamic properties ; THERMODYNAMICS</subject><ispartof>The Journal of chemical physics, 1993-06, Vol.98 (11), p.9080-9093</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-dfecf8f6698406722ab7b5b74f0f2b382511b7907c79fd1fe05aab5fafbf9b7d3</citedby><cites>FETCH-LOGICAL-c281t-dfecf8f6698406722ab7b5b74f0f2b382511b7907c79fd1fe05aab5fafbf9b7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4834825$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6674683$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>YETHIRAJ, A</creatorcontrib><creatorcontrib>SCHWEIZER, K. S</creatorcontrib><title>Integral equation theory of polymer blends : numerical investigation of molecular closure approximations</title><title>The Journal of chemical physics</title><description>The thermodynamics of symmetric polymer blends is investigated using the polymer reference interaction site model integral equation theory with the new molecular closures presented in the previous paper. In contrast to the atomic mean spherical approximation reported earlier by Schweizer and Curro [J. Chem. Phys. 91, 5059 (1989); Chem. Phys. 149, 105 (1990)] (in which the critical temperature is proportional to the square root of the degree of polymerization), the molecular closures predict a linear dependence of the critical temperature on the degree of polymerization, in agreement with classical mean field theory. Detailed numerical calculations using the reference molecular mean spherical approximation (R-MMSA) and the reference molecular Percus–Yevick (R-MPY) closures are presented for the intermolecular structure and effective chi parameter in symmetric blends of semiflexible chains. For the symmetric blend, the R-MMSA closure is almost an integral equation realization of mean field theory, consistent with the analytical results presented in the previous paper. With the R-MPY closure, at low densities, the effective chi parameter is significantly renormalized down from its mean field value and displays a strong composition dependence. As the density is increased, both the renormalization of the effective chi parameter and its composition dependence become weaker. These trends are consistent with recent computer simulations. The influence of chain aspect ratio and the precise choice of intermolecular potentials on blend thermodynamics and phase separation are also explored. With the exception of the composition dependence of the effective chi parameter in the R-MPY theory, the analytical thread calculations are shown to be in qualitative, and sometimes quantitative, agreement with all the numerical results for symmetric blends.</description><subject>Applied sciences</subject><subject>ASPECT RATIO</subject><subject>CHAINS</subject><subject>CHEMICAL COMPOSITION</subject><subject>DISPERSIONS</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>INTEGRAL EQUATIONS</subject><subject>INTERMOLECULAR FORCES</subject><subject>MATERIALS SCIENCE</subject><subject>MIXTURES 360606 -- Other Materials-- Physical Properties-- (1992-)</subject><subject>MOLECULES</subject><subject>NUMERICAL SOLUTION</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>POLYMERS</subject><subject>Properties and characterization</subject><subject>SOLUTIONS</subject><subject>Thermal and thermodynamic properties</subject><subject>THERMODYNAMICS</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNo90E1LxDAQBuAgCq6r4E8I4sFL10mbJq03WfxYWPCi55KkyW6lm9QkFfvvjVY8DQPPDO8MQpcEVgRYcUtWlFHK2BFaEKjqjLMajtECICdZzYCdorMQ3gGA8Jwu0H5jo9550WP9MYrYOYvjXjs_YWfw4PrpoD2WvbZtwHfYjqntVNKd_dQhdrt5JNmD67Uae-Gx6l0YvcZiGLz76g6_JJyjEyP6oC_-6hK9PT68rp-z7cvTZn2_zVRekZi1RitTGcbqigLjeS4kl6Xk1IDJZVHlJSGS18AVr01LjIZSCFkaYaSpJW-LJbqa97oUrwmqi1rtlbNWq9gwximrioRuZqS8C8Fr0ww-BfVTQ6D5eWNDmvmNiV7PdBAhHW68sKoL_55WBU2him-5sXQD</recordid><startdate>19930601</startdate><enddate>19930601</enddate><creator>YETHIRAJ, A</creator><creator>SCHWEIZER, K. S</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19930601</creationdate><title>Integral equation theory of polymer blends : numerical investigation of molecular closure approximations</title><author>YETHIRAJ, A ; SCHWEIZER, K. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-dfecf8f6698406722ab7b5b74f0f2b382511b7907c79fd1fe05aab5fafbf9b7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>ASPECT RATIO</topic><topic>CHAINS</topic><topic>CHEMICAL COMPOSITION</topic><topic>DISPERSIONS</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>INTEGRAL EQUATIONS</topic><topic>INTERMOLECULAR FORCES</topic><topic>MATERIALS SCIENCE</topic><topic>MIXTURES 360606 -- Other Materials-- Physical Properties-- (1992-)</topic><topic>MOLECULES</topic><topic>NUMERICAL SOLUTION</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>POLYMERS</topic><topic>Properties and characterization</topic><topic>SOLUTIONS</topic><topic>Thermal and thermodynamic properties</topic><topic>THERMODYNAMICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YETHIRAJ, A</creatorcontrib><creatorcontrib>SCHWEIZER, K. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YETHIRAJ, A</au><au>SCHWEIZER, K. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integral equation theory of polymer blends : numerical investigation of molecular closure approximations</atitle><jtitle>The Journal of chemical physics</jtitle><date>1993-06-01</date><risdate>1993</risdate><volume>98</volume><issue>11</issue><spage>9080</spage><epage>9093</epage><pages>9080-9093</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The thermodynamics of symmetric polymer blends is investigated using the polymer reference interaction site model integral equation theory with the new molecular closures presented in the previous paper. In contrast to the atomic mean spherical approximation reported earlier by Schweizer and Curro [J. Chem. Phys. 91, 5059 (1989); Chem. Phys. 149, 105 (1990)] (in which the critical temperature is proportional to the square root of the degree of polymerization), the molecular closures predict a linear dependence of the critical temperature on the degree of polymerization, in agreement with classical mean field theory. Detailed numerical calculations using the reference molecular mean spherical approximation (R-MMSA) and the reference molecular Percus–Yevick (R-MPY) closures are presented for the intermolecular structure and effective chi parameter in symmetric blends of semiflexible chains. For the symmetric blend, the R-MMSA closure is almost an integral equation realization of mean field theory, consistent with the analytical results presented in the previous paper. With the R-MPY closure, at low densities, the effective chi parameter is significantly renormalized down from its mean field value and displays a strong composition dependence. As the density is increased, both the renormalization of the effective chi parameter and its composition dependence become weaker. These trends are consistent with recent computer simulations. The influence of chain aspect ratio and the precise choice of intermolecular potentials on blend thermodynamics and phase separation are also explored. With the exception of the composition dependence of the effective chi parameter in the R-MPY theory, the analytical thread calculations are shown to be in qualitative, and sometimes quantitative, agreement with all the numerical results for symmetric blends.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.464466</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 1993-06, Vol.98 (11), p.9080-9093
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_6674683
source AIP Digital Archive
subjects Applied sciences
ASPECT RATIO
CHAINS
CHEMICAL COMPOSITION
DISPERSIONS
EQUATIONS
Exact sciences and technology
INTEGRAL EQUATIONS
INTERMOLECULAR FORCES
MATERIALS SCIENCE
MIXTURES 360606 -- Other Materials-- Physical Properties-- (1992-)
MOLECULES
NUMERICAL SOLUTION
Organic polymers
Physicochemistry of polymers
POLYMERS
Properties and characterization
SOLUTIONS
Thermal and thermodynamic properties
THERMODYNAMICS
title Integral equation theory of polymer blends : numerical investigation of molecular closure approximations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integral%20equation%20theory%20of%20polymer%20blends%20:%20numerical%20investigation%20of%20molecular%20closure%20approximations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=YETHIRAJ,%20A&rft.date=1993-06-01&rft.volume=98&rft.issue=11&rft.spage=9080&rft.epage=9093&rft.pages=9080-9093&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.464466&rft_dat=%3Cpascalfrancis_osti_%3E4834825%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true