Experimental validation of a mathematical model for fixed-bed desulfurization
Porous particles of two commercially available ZnO sorbents differing in porosity, surface area, and pore‐size distribution were reacted with H2S at 500 and 600°C in a fixed‐bed reactor. Concentration breakthrough curves were determined by analyzing the effluent of the reactor using a gas chromotogr...
Gespeichert in:
Veröffentlicht in: | AIChE journal 1993-01, Vol.39 (1), p.99-110 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | 1 |
container_start_page | 99 |
container_title | AIChE journal |
container_volume | 39 |
creator | Efthimiadis, Evangelos A. Sotirchos, Stratis V. |
description | Porous particles of two commercially available ZnO sorbents differing in porosity, surface area, and pore‐size distribution were reacted with H2S at 500 and 600°C in a fixed‐bed reactor. Concentration breakthrough curves were determined by analyzing the effluent of the reactor using a gas chromotograph equipped with thermal conductivity and flame photometric detectors. The pore structure of samples collected from different positions in the reactor was analyzed by mercury porosimetry and gas adsorption to determine the variation of the average structural properties of the sorbent with the length of the reactor. The obtained experimental data were used to validate a fixed‐bed desulfurization model, which employs detailed submodels for diffusion, reaction, and structure evolution in the porous sorbent particles. With the various parameters appearing in the submodels determined from independent thermogravimetric reactivity evolution experiments, the fixed‐bed desulfurization model was found to be capable of providing an excellent description of the behavior of the desulfurization sorbents in a fixed‐bed reactor. |
doi_str_mv | 10.1002/aic.690390111 |
format | Article |
fullrecord | <record><control><sourceid>wiley_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6518862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AIC690390111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4131-fdd249dff33f05cd4462a2c1b82fe96ca3a6cbe3a42035bab08e7fc64870d3d33</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqUwskeINcXfScZSlbRSKQuI0XL8oRrSpLJTaPn1GFJVTEgnn85-3jvfC8A1giMEIb6TTo14AUkBEUInYIAYzVJWQHYKBhBClMYLdA4uQniLFc5yPACP093GeLc2TSfr5EPWTsvOtU3S2kQma9mtTDycio_rVps6sa1PrNsZnVZGJ9qEbW233n39qi7BmZV1MFeHPAQvD9PnySxdPJXzyXiRKooISq3WmBbaWkIsZEpTyrHEClU5tqbgShLJVWWIpBgSVskK5iazitM8g5poQobgpu_bhs6JoFxn1Eq1TWNUJzhDec5xhNIeUr4NwRsrNnFR6fcCQfFjmIiGiaNhkb_t-Y0McV_rZaNcOIooYzxGxLIe-3S12f_fU4znk78DDh9yoTO7o1L6d8EzkjHxuiwFmfHlpLxHoiTfpqqK4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental validation of a mathematical model for fixed-bed desulfurization</title><source>Wiley Online Library All Journals</source><creator>Efthimiadis, Evangelos A. ; Sotirchos, Stratis V.</creator><creatorcontrib>Efthimiadis, Evangelos A. ; Sotirchos, Stratis V.</creatorcontrib><description>Porous particles of two commercially available ZnO sorbents differing in porosity, surface area, and pore‐size distribution were reacted with H2S at 500 and 600°C in a fixed‐bed reactor. Concentration breakthrough curves were determined by analyzing the effluent of the reactor using a gas chromotograph equipped with thermal conductivity and flame photometric detectors. The pore structure of samples collected from different positions in the reactor was analyzed by mercury porosimetry and gas adsorption to determine the variation of the average structural properties of the sorbent with the length of the reactor. The obtained experimental data were used to validate a fixed‐bed desulfurization model, which employs detailed submodels for diffusion, reaction, and structure evolution in the porous sorbent particles. With the various parameters appearing in the submodels determined from independent thermogravimetric reactivity evolution experiments, the fixed‐bed desulfurization model was found to be capable of providing an excellent description of the behavior of the desulfurization sorbents in a fixed‐bed reactor.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690390111</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>01 COAL, LIGNITE, AND PEAT ; 010402 - Coal, Lignite, & Peat- Purification & Upgrading ; ADSORBENTS ; Applied sciences ; Atmospheric pollution ; CHALCOGENIDES ; CHEMICAL REACTIONS ; CHROMATOGRAPHY ; COAL GAS ; Combustion and energy production ; CRYSTAL STRUCTURE ; DATA ; DESULFURIZATION ; DIFFUSION ; DISTRIBUTION ; Exact sciences and technology ; EXPERIMENTAL DATA ; FLUIDS ; GAS CHROMATOGRAPHY ; GASES ; HOT GAS CLEANUP ; HYDROGEN COMPOUNDS ; HYDROGEN SULFIDES ; INFORMATION ; MATHEMATICAL MODELS ; MICROSTRUCTURE ; NUMERICAL DATA ; OXIDES ; OXYGEN COMPOUNDS ; PACKED BEDS ; Pollution ; POROSITY ; Prevention and purification methods ; PURIFICATION ; PYROLYSIS PRODUCTS ; SEPARATION PROCESSES ; SULFIDATION ; SULFIDES ; SULFUR COMPOUNDS ; SURFACE AREA ; SURFACE PROPERTIES ; ZINC COMPOUNDS ; ZINC OXIDES</subject><ispartof>AIChE journal, 1993-01, Vol.39 (1), p.99-110</ispartof><rights>Copyright © 1993 American Institute of Chemical Engineers</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4131-fdd249dff33f05cd4462a2c1b82fe96ca3a6cbe3a42035bab08e7fc64870d3d33</citedby><cites>FETCH-LOGICAL-c4131-fdd249dff33f05cd4462a2c1b82fe96ca3a6cbe3a42035bab08e7fc64870d3d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690390111$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690390111$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,4022,27922,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4556556$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6518862$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Efthimiadis, Evangelos A.</creatorcontrib><creatorcontrib>Sotirchos, Stratis V.</creatorcontrib><title>Experimental validation of a mathematical model for fixed-bed desulfurization</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Porous particles of two commercially available ZnO sorbents differing in porosity, surface area, and pore‐size distribution were reacted with H2S at 500 and 600°C in a fixed‐bed reactor. Concentration breakthrough curves were determined by analyzing the effluent of the reactor using a gas chromotograph equipped with thermal conductivity and flame photometric detectors. The pore structure of samples collected from different positions in the reactor was analyzed by mercury porosimetry and gas adsorption to determine the variation of the average structural properties of the sorbent with the length of the reactor. The obtained experimental data were used to validate a fixed‐bed desulfurization model, which employs detailed submodels for diffusion, reaction, and structure evolution in the porous sorbent particles. With the various parameters appearing in the submodels determined from independent thermogravimetric reactivity evolution experiments, the fixed‐bed desulfurization model was found to be capable of providing an excellent description of the behavior of the desulfurization sorbents in a fixed‐bed reactor.</description><subject>01 COAL, LIGNITE, AND PEAT</subject><subject>010402 - Coal, Lignite, & Peat- Purification & Upgrading</subject><subject>ADSORBENTS</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>CHALCOGENIDES</subject><subject>CHEMICAL REACTIONS</subject><subject>CHROMATOGRAPHY</subject><subject>COAL GAS</subject><subject>Combustion and energy production</subject><subject>CRYSTAL STRUCTURE</subject><subject>DATA</subject><subject>DESULFURIZATION</subject><subject>DIFFUSION</subject><subject>DISTRIBUTION</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>FLUIDS</subject><subject>GAS CHROMATOGRAPHY</subject><subject>GASES</subject><subject>HOT GAS CLEANUP</subject><subject>HYDROGEN COMPOUNDS</subject><subject>HYDROGEN SULFIDES</subject><subject>INFORMATION</subject><subject>MATHEMATICAL MODELS</subject><subject>MICROSTRUCTURE</subject><subject>NUMERICAL DATA</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>PACKED BEDS</subject><subject>Pollution</subject><subject>POROSITY</subject><subject>Prevention and purification methods</subject><subject>PURIFICATION</subject><subject>PYROLYSIS PRODUCTS</subject><subject>SEPARATION PROCESSES</subject><subject>SULFIDATION</subject><subject>SULFIDES</subject><subject>SULFUR COMPOUNDS</subject><subject>SURFACE AREA</subject><subject>SURFACE PROPERTIES</subject><subject>ZINC COMPOUNDS</subject><subject>ZINC OXIDES</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqUwskeINcXfScZSlbRSKQuI0XL8oRrSpLJTaPn1GFJVTEgnn85-3jvfC8A1giMEIb6TTo14AUkBEUInYIAYzVJWQHYKBhBClMYLdA4uQniLFc5yPACP093GeLc2TSfr5EPWTsvOtU3S2kQma9mtTDycio_rVps6sa1PrNsZnVZGJ9qEbW233n39qi7BmZV1MFeHPAQvD9PnySxdPJXzyXiRKooISq3WmBbaWkIsZEpTyrHEClU5tqbgShLJVWWIpBgSVskK5iazitM8g5poQobgpu_bhs6JoFxn1Eq1TWNUJzhDec5xhNIeUr4NwRsrNnFR6fcCQfFjmIiGiaNhkb_t-Y0McV_rZaNcOIooYzxGxLIe-3S12f_fU4znk78DDh9yoTO7o1L6d8EzkjHxuiwFmfHlpLxHoiTfpqqK4Q</recordid><startdate>199301</startdate><enddate>199301</enddate><creator>Efthimiadis, Evangelos A.</creator><creator>Sotirchos, Stratis V.</creator><general>American Institute of Chemical Engineers</general><general>Wiley Subscription Services</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>199301</creationdate><title>Experimental validation of a mathematical model for fixed-bed desulfurization</title><author>Efthimiadis, Evangelos A. ; Sotirchos, Stratis V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4131-fdd249dff33f05cd4462a2c1b82fe96ca3a6cbe3a42035bab08e7fc64870d3d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>01 COAL, LIGNITE, AND PEAT</topic><topic>010402 - Coal, Lignite, & Peat- Purification & Upgrading</topic><topic>ADSORBENTS</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>CHALCOGENIDES</topic><topic>CHEMICAL REACTIONS</topic><topic>CHROMATOGRAPHY</topic><topic>COAL GAS</topic><topic>Combustion and energy production</topic><topic>CRYSTAL STRUCTURE</topic><topic>DATA</topic><topic>DESULFURIZATION</topic><topic>DIFFUSION</topic><topic>DISTRIBUTION</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>FLUIDS</topic><topic>GAS CHROMATOGRAPHY</topic><topic>GASES</topic><topic>HOT GAS CLEANUP</topic><topic>HYDROGEN COMPOUNDS</topic><topic>HYDROGEN SULFIDES</topic><topic>INFORMATION</topic><topic>MATHEMATICAL MODELS</topic><topic>MICROSTRUCTURE</topic><topic>NUMERICAL DATA</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>PACKED BEDS</topic><topic>Pollution</topic><topic>POROSITY</topic><topic>Prevention and purification methods</topic><topic>PURIFICATION</topic><topic>PYROLYSIS PRODUCTS</topic><topic>SEPARATION PROCESSES</topic><topic>SULFIDATION</topic><topic>SULFIDES</topic><topic>SULFUR COMPOUNDS</topic><topic>SURFACE AREA</topic><topic>SURFACE PROPERTIES</topic><topic>ZINC COMPOUNDS</topic><topic>ZINC OXIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efthimiadis, Evangelos A.</creatorcontrib><creatorcontrib>Sotirchos, Stratis V.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Efthimiadis, Evangelos A.</au><au>Sotirchos, Stratis V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental validation of a mathematical model for fixed-bed desulfurization</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>1993-01</date><risdate>1993</risdate><volume>39</volume><issue>1</issue><spage>99</spage><epage>110</epage><pages>99-110</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Porous particles of two commercially available ZnO sorbents differing in porosity, surface area, and pore‐size distribution were reacted with H2S at 500 and 600°C in a fixed‐bed reactor. Concentration breakthrough curves were determined by analyzing the effluent of the reactor using a gas chromotograph equipped with thermal conductivity and flame photometric detectors. The pore structure of samples collected from different positions in the reactor was analyzed by mercury porosimetry and gas adsorption to determine the variation of the average structural properties of the sorbent with the length of the reactor. The obtained experimental data were used to validate a fixed‐bed desulfurization model, which employs detailed submodels for diffusion, reaction, and structure evolution in the porous sorbent particles. With the various parameters appearing in the submodels determined from independent thermogravimetric reactivity evolution experiments, the fixed‐bed desulfurization model was found to be capable of providing an excellent description of the behavior of the desulfurization sorbents in a fixed‐bed reactor.</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.690390111</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 1993-01, Vol.39 (1), p.99-110 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_osti_scitechconnect_6518862 |
source | Wiley Online Library All Journals |
subjects | 01 COAL, LIGNITE, AND PEAT 010402 - Coal, Lignite, & Peat- Purification & Upgrading ADSORBENTS Applied sciences Atmospheric pollution CHALCOGENIDES CHEMICAL REACTIONS CHROMATOGRAPHY COAL GAS Combustion and energy production CRYSTAL STRUCTURE DATA DESULFURIZATION DIFFUSION DISTRIBUTION Exact sciences and technology EXPERIMENTAL DATA FLUIDS GAS CHROMATOGRAPHY GASES HOT GAS CLEANUP HYDROGEN COMPOUNDS HYDROGEN SULFIDES INFORMATION MATHEMATICAL MODELS MICROSTRUCTURE NUMERICAL DATA OXIDES OXYGEN COMPOUNDS PACKED BEDS Pollution POROSITY Prevention and purification methods PURIFICATION PYROLYSIS PRODUCTS SEPARATION PROCESSES SULFIDATION SULFIDES SULFUR COMPOUNDS SURFACE AREA SURFACE PROPERTIES ZINC COMPOUNDS ZINC OXIDES |
title | Experimental validation of a mathematical model for fixed-bed desulfurization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20validation%20of%20a%20mathematical%20model%20for%20fixed-bed%20desulfurization&rft.jtitle=AIChE%20journal&rft.au=Efthimiadis,%20Evangelos%20A.&rft.date=1993-01&rft.volume=39&rft.issue=1&rft.spage=99&rft.epage=110&rft.pages=99-110&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690390111&rft_dat=%3Cwiley_osti_%3EAIC690390111%3C/wiley_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |