Experimental validation of a mathematical model for fixed-bed desulfurization

Porous particles of two commercially available ZnO sorbents differing in porosity, surface area, and pore‐size distribution were reacted with H2S at 500 and 600°C in a fixed‐bed reactor. Concentration breakthrough curves were determined by analyzing the effluent of the reactor using a gas chromotogr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 1993-01, Vol.39 (1), p.99-110
Hauptverfasser: Efthimiadis, Evangelos A., Sotirchos, Stratis V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue 1
container_start_page 99
container_title AIChE journal
container_volume 39
creator Efthimiadis, Evangelos A.
Sotirchos, Stratis V.
description Porous particles of two commercially available ZnO sorbents differing in porosity, surface area, and pore‐size distribution were reacted with H2S at 500 and 600°C in a fixed‐bed reactor. Concentration breakthrough curves were determined by analyzing the effluent of the reactor using a gas chromotograph equipped with thermal conductivity and flame photometric detectors. The pore structure of samples collected from different positions in the reactor was analyzed by mercury porosimetry and gas adsorption to determine the variation of the average structural properties of the sorbent with the length of the reactor. The obtained experimental data were used to validate a fixed‐bed desulfurization model, which employs detailed submodels for diffusion, reaction, and structure evolution in the porous sorbent particles. With the various parameters appearing in the submodels determined from independent thermogravimetric reactivity evolution experiments, the fixed‐bed desulfurization model was found to be capable of providing an excellent description of the behavior of the desulfurization sorbents in a fixed‐bed reactor.
doi_str_mv 10.1002/aic.690390111
format Article
fullrecord <record><control><sourceid>wiley_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6518862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AIC690390111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4131-fdd249dff33f05cd4462a2c1b82fe96ca3a6cbe3a42035bab08e7fc64870d3d33</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqUwskeINcXfScZSlbRSKQuI0XL8oRrSpLJTaPn1GFJVTEgnn85-3jvfC8A1giMEIb6TTo14AUkBEUInYIAYzVJWQHYKBhBClMYLdA4uQniLFc5yPACP093GeLc2TSfr5EPWTsvOtU3S2kQma9mtTDycio_rVps6sa1PrNsZnVZGJ9qEbW233n39qi7BmZV1MFeHPAQvD9PnySxdPJXzyXiRKooISq3WmBbaWkIsZEpTyrHEClU5tqbgShLJVWWIpBgSVskK5iazitM8g5poQobgpu_bhs6JoFxn1Eq1TWNUJzhDec5xhNIeUr4NwRsrNnFR6fcCQfFjmIiGiaNhkb_t-Y0McV_rZaNcOIooYzxGxLIe-3S12f_fU4znk78DDh9yoTO7o1L6d8EzkjHxuiwFmfHlpLxHoiTfpqqK4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental validation of a mathematical model for fixed-bed desulfurization</title><source>Wiley Online Library All Journals</source><creator>Efthimiadis, Evangelos A. ; Sotirchos, Stratis V.</creator><creatorcontrib>Efthimiadis, Evangelos A. ; Sotirchos, Stratis V.</creatorcontrib><description>Porous particles of two commercially available ZnO sorbents differing in porosity, surface area, and pore‐size distribution were reacted with H2S at 500 and 600°C in a fixed‐bed reactor. Concentration breakthrough curves were determined by analyzing the effluent of the reactor using a gas chromotograph equipped with thermal conductivity and flame photometric detectors. The pore structure of samples collected from different positions in the reactor was analyzed by mercury porosimetry and gas adsorption to determine the variation of the average structural properties of the sorbent with the length of the reactor. The obtained experimental data were used to validate a fixed‐bed desulfurization model, which employs detailed submodels for diffusion, reaction, and structure evolution in the porous sorbent particles. With the various parameters appearing in the submodels determined from independent thermogravimetric reactivity evolution experiments, the fixed‐bed desulfurization model was found to be capable of providing an excellent description of the behavior of the desulfurization sorbents in a fixed‐bed reactor.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690390111</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>01 COAL, LIGNITE, AND PEAT ; 010402 - Coal, Lignite, &amp; Peat- Purification &amp; Upgrading ; ADSORBENTS ; Applied sciences ; Atmospheric pollution ; CHALCOGENIDES ; CHEMICAL REACTIONS ; CHROMATOGRAPHY ; COAL GAS ; Combustion and energy production ; CRYSTAL STRUCTURE ; DATA ; DESULFURIZATION ; DIFFUSION ; DISTRIBUTION ; Exact sciences and technology ; EXPERIMENTAL DATA ; FLUIDS ; GAS CHROMATOGRAPHY ; GASES ; HOT GAS CLEANUP ; HYDROGEN COMPOUNDS ; HYDROGEN SULFIDES ; INFORMATION ; MATHEMATICAL MODELS ; MICROSTRUCTURE ; NUMERICAL DATA ; OXIDES ; OXYGEN COMPOUNDS ; PACKED BEDS ; Pollution ; POROSITY ; Prevention and purification methods ; PURIFICATION ; PYROLYSIS PRODUCTS ; SEPARATION PROCESSES ; SULFIDATION ; SULFIDES ; SULFUR COMPOUNDS ; SURFACE AREA ; SURFACE PROPERTIES ; ZINC COMPOUNDS ; ZINC OXIDES</subject><ispartof>AIChE journal, 1993-01, Vol.39 (1), p.99-110</ispartof><rights>Copyright © 1993 American Institute of Chemical Engineers</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4131-fdd249dff33f05cd4462a2c1b82fe96ca3a6cbe3a42035bab08e7fc64870d3d33</citedby><cites>FETCH-LOGICAL-c4131-fdd249dff33f05cd4462a2c1b82fe96ca3a6cbe3a42035bab08e7fc64870d3d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690390111$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690390111$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,4022,27922,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4556556$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6518862$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Efthimiadis, Evangelos A.</creatorcontrib><creatorcontrib>Sotirchos, Stratis V.</creatorcontrib><title>Experimental validation of a mathematical model for fixed-bed desulfurization</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Porous particles of two commercially available ZnO sorbents differing in porosity, surface area, and pore‐size distribution were reacted with H2S at 500 and 600°C in a fixed‐bed reactor. Concentration breakthrough curves were determined by analyzing the effluent of the reactor using a gas chromotograph equipped with thermal conductivity and flame photometric detectors. The pore structure of samples collected from different positions in the reactor was analyzed by mercury porosimetry and gas adsorption to determine the variation of the average structural properties of the sorbent with the length of the reactor. The obtained experimental data were used to validate a fixed‐bed desulfurization model, which employs detailed submodels for diffusion, reaction, and structure evolution in the porous sorbent particles. With the various parameters appearing in the submodels determined from independent thermogravimetric reactivity evolution experiments, the fixed‐bed desulfurization model was found to be capable of providing an excellent description of the behavior of the desulfurization sorbents in a fixed‐bed reactor.</description><subject>01 COAL, LIGNITE, AND PEAT</subject><subject>010402 - Coal, Lignite, &amp; Peat- Purification &amp; Upgrading</subject><subject>ADSORBENTS</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>CHALCOGENIDES</subject><subject>CHEMICAL REACTIONS</subject><subject>CHROMATOGRAPHY</subject><subject>COAL GAS</subject><subject>Combustion and energy production</subject><subject>CRYSTAL STRUCTURE</subject><subject>DATA</subject><subject>DESULFURIZATION</subject><subject>DIFFUSION</subject><subject>DISTRIBUTION</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>FLUIDS</subject><subject>GAS CHROMATOGRAPHY</subject><subject>GASES</subject><subject>HOT GAS CLEANUP</subject><subject>HYDROGEN COMPOUNDS</subject><subject>HYDROGEN SULFIDES</subject><subject>INFORMATION</subject><subject>MATHEMATICAL MODELS</subject><subject>MICROSTRUCTURE</subject><subject>NUMERICAL DATA</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>PACKED BEDS</subject><subject>Pollution</subject><subject>POROSITY</subject><subject>Prevention and purification methods</subject><subject>PURIFICATION</subject><subject>PYROLYSIS PRODUCTS</subject><subject>SEPARATION PROCESSES</subject><subject>SULFIDATION</subject><subject>SULFIDES</subject><subject>SULFUR COMPOUNDS</subject><subject>SURFACE AREA</subject><subject>SURFACE PROPERTIES</subject><subject>ZINC COMPOUNDS</subject><subject>ZINC OXIDES</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqUwskeINcXfScZSlbRSKQuI0XL8oRrSpLJTaPn1GFJVTEgnn85-3jvfC8A1giMEIb6TTo14AUkBEUInYIAYzVJWQHYKBhBClMYLdA4uQniLFc5yPACP093GeLc2TSfr5EPWTsvOtU3S2kQma9mtTDycio_rVps6sa1PrNsZnVZGJ9qEbW233n39qi7BmZV1MFeHPAQvD9PnySxdPJXzyXiRKooISq3WmBbaWkIsZEpTyrHEClU5tqbgShLJVWWIpBgSVskK5iazitM8g5poQobgpu_bhs6JoFxn1Eq1TWNUJzhDec5xhNIeUr4NwRsrNnFR6fcCQfFjmIiGiaNhkb_t-Y0McV_rZaNcOIooYzxGxLIe-3S12f_fU4znk78DDh9yoTO7o1L6d8EzkjHxuiwFmfHlpLxHoiTfpqqK4Q</recordid><startdate>199301</startdate><enddate>199301</enddate><creator>Efthimiadis, Evangelos A.</creator><creator>Sotirchos, Stratis V.</creator><general>American Institute of Chemical Engineers</general><general>Wiley Subscription Services</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>199301</creationdate><title>Experimental validation of a mathematical model for fixed-bed desulfurization</title><author>Efthimiadis, Evangelos A. ; Sotirchos, Stratis V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4131-fdd249dff33f05cd4462a2c1b82fe96ca3a6cbe3a42035bab08e7fc64870d3d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>01 COAL, LIGNITE, AND PEAT</topic><topic>010402 - Coal, Lignite, &amp; Peat- Purification &amp; Upgrading</topic><topic>ADSORBENTS</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>CHALCOGENIDES</topic><topic>CHEMICAL REACTIONS</topic><topic>CHROMATOGRAPHY</topic><topic>COAL GAS</topic><topic>Combustion and energy production</topic><topic>CRYSTAL STRUCTURE</topic><topic>DATA</topic><topic>DESULFURIZATION</topic><topic>DIFFUSION</topic><topic>DISTRIBUTION</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>FLUIDS</topic><topic>GAS CHROMATOGRAPHY</topic><topic>GASES</topic><topic>HOT GAS CLEANUP</topic><topic>HYDROGEN COMPOUNDS</topic><topic>HYDROGEN SULFIDES</topic><topic>INFORMATION</topic><topic>MATHEMATICAL MODELS</topic><topic>MICROSTRUCTURE</topic><topic>NUMERICAL DATA</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>PACKED BEDS</topic><topic>Pollution</topic><topic>POROSITY</topic><topic>Prevention and purification methods</topic><topic>PURIFICATION</topic><topic>PYROLYSIS PRODUCTS</topic><topic>SEPARATION PROCESSES</topic><topic>SULFIDATION</topic><topic>SULFIDES</topic><topic>SULFUR COMPOUNDS</topic><topic>SURFACE AREA</topic><topic>SURFACE PROPERTIES</topic><topic>ZINC COMPOUNDS</topic><topic>ZINC OXIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efthimiadis, Evangelos A.</creatorcontrib><creatorcontrib>Sotirchos, Stratis V.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Efthimiadis, Evangelos A.</au><au>Sotirchos, Stratis V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental validation of a mathematical model for fixed-bed desulfurization</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>1993-01</date><risdate>1993</risdate><volume>39</volume><issue>1</issue><spage>99</spage><epage>110</epage><pages>99-110</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Porous particles of two commercially available ZnO sorbents differing in porosity, surface area, and pore‐size distribution were reacted with H2S at 500 and 600°C in a fixed‐bed reactor. Concentration breakthrough curves were determined by analyzing the effluent of the reactor using a gas chromotograph equipped with thermal conductivity and flame photometric detectors. The pore structure of samples collected from different positions in the reactor was analyzed by mercury porosimetry and gas adsorption to determine the variation of the average structural properties of the sorbent with the length of the reactor. The obtained experimental data were used to validate a fixed‐bed desulfurization model, which employs detailed submodels for diffusion, reaction, and structure evolution in the porous sorbent particles. With the various parameters appearing in the submodels determined from independent thermogravimetric reactivity evolution experiments, the fixed‐bed desulfurization model was found to be capable of providing an excellent description of the behavior of the desulfurization sorbents in a fixed‐bed reactor.</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.690390111</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 1993-01, Vol.39 (1), p.99-110
issn 0001-1541
1547-5905
language eng
recordid cdi_osti_scitechconnect_6518862
source Wiley Online Library All Journals
subjects 01 COAL, LIGNITE, AND PEAT
010402 - Coal, Lignite, & Peat- Purification & Upgrading
ADSORBENTS
Applied sciences
Atmospheric pollution
CHALCOGENIDES
CHEMICAL REACTIONS
CHROMATOGRAPHY
COAL GAS
Combustion and energy production
CRYSTAL STRUCTURE
DATA
DESULFURIZATION
DIFFUSION
DISTRIBUTION
Exact sciences and technology
EXPERIMENTAL DATA
FLUIDS
GAS CHROMATOGRAPHY
GASES
HOT GAS CLEANUP
HYDROGEN COMPOUNDS
HYDROGEN SULFIDES
INFORMATION
MATHEMATICAL MODELS
MICROSTRUCTURE
NUMERICAL DATA
OXIDES
OXYGEN COMPOUNDS
PACKED BEDS
Pollution
POROSITY
Prevention and purification methods
PURIFICATION
PYROLYSIS PRODUCTS
SEPARATION PROCESSES
SULFIDATION
SULFIDES
SULFUR COMPOUNDS
SURFACE AREA
SURFACE PROPERTIES
ZINC COMPOUNDS
ZINC OXIDES
title Experimental validation of a mathematical model for fixed-bed desulfurization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20validation%20of%20a%20mathematical%20model%20for%20fixed-bed%20desulfurization&rft.jtitle=AIChE%20journal&rft.au=Efthimiadis,%20Evangelos%20A.&rft.date=1993-01&rft.volume=39&rft.issue=1&rft.spage=99&rft.epage=110&rft.pages=99-110&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690390111&rft_dat=%3Cwiley_osti_%3EAIC690390111%3C/wiley_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true