Thermal noise in mechanical experiments

The fluctuation-dissipation theorem is applied to the case of low-dissipation mechanical oscillators, whose losses are dominated by processes occurring inside the material of which the oscillators are made. In the common case of losses described by a complex spring constant with a constant imaginary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D, Particles and fields Particles and fields, 1990-10, Vol.42 (8), p.2437-2445
1. Verfasser: SAULSON, P. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2445
container_issue 8
container_start_page 2437
container_title Physical review. D, Particles and fields
container_volume 42
creator SAULSON, P. R
description The fluctuation-dissipation theorem is applied to the case of low-dissipation mechanical oscillators, whose losses are dominated by processes occurring inside the material of which the oscillators are made. In the common case of losses described by a complex spring constant with a constant imaginary part, the thermal noise displacement power spectrum is steeper by one power of {omega} than is predicted by a velocity-damping model. I construct models for the thermal noise spectra of systems with more than one mode of vibration, and evaluate a model of a specific design of pendulum suspension for the test masses in a gravitational-wave interferometer.
doi_str_mv 10.1103/PhysRevD.42.2437
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6315456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859220279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-6e4cc94ae8e12706dfdf32b24da82a5ab97c109d3dba90944e08b59cc52c47b03</originalsourceid><addsrcrecordid>eNpNkMtLw0AQhxdRbH3cPUkRQS-ps68ke5T6hIIi9bxsNhO6kmxqNhX737slVZzLwPD9hpmPkDMKU0qB37wuN-ENv-6mgk2Z4NkeGVPIVSIUzffJGKRME5YzOiJHIXxALJbyQzKiAJRTysbkarHErjH1xLcu4MT5SYN2abyzcYbfK-xcg74PJ-SgMnXA010_Ju8P94vZUzJ_eXye3c4TKwD6JEVhrRIGc6Qsg7SsyoqzgonS5MxIU6jMUlAlLwujQAmBkBdSWSuZFVkB_JhcDHvb0DsdrOvjObb1Hm2vU06lkGmErgdo1bWfawy9blywWNfGY7sOmuZSMQYsUxGFAbVdG0KHlV7Fj0y30RT01qH-dagF01uHMXK-274uGiz_BQZpEbjcASZETVVnvHXhj5MiY0pQ_gOcgXlz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859220279</pqid></control><display><type>article</type><title>Thermal noise in mechanical experiments</title><source>American Physical Society Journals</source><creator>SAULSON, P. R</creator><creatorcontrib>SAULSON, P. R</creatorcontrib><description>The fluctuation-dissipation theorem is applied to the case of low-dissipation mechanical oscillators, whose losses are dominated by processes occurring inside the material of which the oscillators are made. In the common case of losses described by a complex spring constant with a constant imaginary part, the thermal noise displacement power spectrum is steeper by one power of {omega} than is predicted by a velocity-damping model. I construct models for the thermal noise spectra of systems with more than one mode of vibration, and evaluate a model of a specific design of pendulum suspension for the test masses in a gravitational-wave interferometer.</description><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.42.2437</identifier><identifier>PMID: 10013112</identifier><identifier>CODEN: PRVDAQ</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>640106 - Astrophysics &amp; Cosmology- Cosmology ; BROWNIAN MOVEMENT ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical and quantum physics: mechanics and fields ; Classical mechanics of discrete systems: general mathematical aspects ; DIFFERENTIAL EQUATIONS ; EQUATIONS ; EQUATIONS OF MOTION ; Exact sciences and technology ; FRICTION ; FUNCTIONS ; GRAVITATIONAL WAVE DETECTORS ; HARMONIC OSCILLATOR MODELS ; LANGEVIN EQUATION ; MASS ; MATHEMATICAL MODELS ; MEASURING INSTRUMENTS ; MECHANICAL VIBRATIONS ; MOMENTUM TRANSFER ; NOISE ; PARTIAL DIFFERENTIAL EQUATIONS ; Physics ; RADIATION DETECTORS ; SPECTRAL DENSITY ; SPECTRAL FUNCTIONS ; TEMPERATURE NOISE</subject><ispartof>Physical review. D, Particles and fields, 1990-10, Vol.42 (8), p.2437-2445</ispartof><rights>1992 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-6e4cc94ae8e12706dfdf32b24da82a5ab97c109d3dba90944e08b59cc52c47b03</citedby><cites>FETCH-LOGICAL-c400t-6e4cc94ae8e12706dfdf32b24da82a5ab97c109d3dba90944e08b59cc52c47b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5472941$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10013112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6315456$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>SAULSON, P. R</creatorcontrib><title>Thermal noise in mechanical experiments</title><title>Physical review. D, Particles and fields</title><addtitle>Phys Rev D Part Fields</addtitle><description>The fluctuation-dissipation theorem is applied to the case of low-dissipation mechanical oscillators, whose losses are dominated by processes occurring inside the material of which the oscillators are made. In the common case of losses described by a complex spring constant with a constant imaginary part, the thermal noise displacement power spectrum is steeper by one power of {omega} than is predicted by a velocity-damping model. I construct models for the thermal noise spectra of systems with more than one mode of vibration, and evaluate a model of a specific design of pendulum suspension for the test masses in a gravitational-wave interferometer.</description><subject>640106 - Astrophysics &amp; Cosmology- Cosmology</subject><subject>BROWNIAN MOVEMENT</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical mechanics of discrete systems: general mathematical aspects</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF MOTION</subject><subject>Exact sciences and technology</subject><subject>FRICTION</subject><subject>FUNCTIONS</subject><subject>GRAVITATIONAL WAVE DETECTORS</subject><subject>HARMONIC OSCILLATOR MODELS</subject><subject>LANGEVIN EQUATION</subject><subject>MASS</subject><subject>MATHEMATICAL MODELS</subject><subject>MEASURING INSTRUMENTS</subject><subject>MECHANICAL VIBRATIONS</subject><subject>MOMENTUM TRANSFER</subject><subject>NOISE</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Physics</subject><subject>RADIATION DETECTORS</subject><subject>SPECTRAL DENSITY</subject><subject>SPECTRAL FUNCTIONS</subject><subject>TEMPERATURE NOISE</subject><issn>0556-2821</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNpNkMtLw0AQhxdRbH3cPUkRQS-ps68ke5T6hIIi9bxsNhO6kmxqNhX737slVZzLwPD9hpmPkDMKU0qB37wuN-ENv-6mgk2Z4NkeGVPIVSIUzffJGKRME5YzOiJHIXxALJbyQzKiAJRTysbkarHErjH1xLcu4MT5SYN2abyzcYbfK-xcg74PJ-SgMnXA010_Ju8P94vZUzJ_eXye3c4TKwD6JEVhrRIGc6Qsg7SsyoqzgonS5MxIU6jMUlAlLwujQAmBkBdSWSuZFVkB_JhcDHvb0DsdrOvjObb1Hm2vU06lkGmErgdo1bWfawy9blywWNfGY7sOmuZSMQYsUxGFAbVdG0KHlV7Fj0y30RT01qH-dagF01uHMXK-274uGiz_BQZpEbjcASZETVVnvHXhj5MiY0pQ_gOcgXlz</recordid><startdate>19901015</startdate><enddate>19901015</enddate><creator>SAULSON, P. R</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19901015</creationdate><title>Thermal noise in mechanical experiments</title><author>SAULSON, P. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-6e4cc94ae8e12706dfdf32b24da82a5ab97c109d3dba90944e08b59cc52c47b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>640106 - Astrophysics &amp; Cosmology- Cosmology</topic><topic>BROWNIAN MOVEMENT</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical mechanics of discrete systems: general mathematical aspects</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF MOTION</topic><topic>Exact sciences and technology</topic><topic>FRICTION</topic><topic>FUNCTIONS</topic><topic>GRAVITATIONAL WAVE DETECTORS</topic><topic>HARMONIC OSCILLATOR MODELS</topic><topic>LANGEVIN EQUATION</topic><topic>MASS</topic><topic>MATHEMATICAL MODELS</topic><topic>MEASURING INSTRUMENTS</topic><topic>MECHANICAL VIBRATIONS</topic><topic>MOMENTUM TRANSFER</topic><topic>NOISE</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Physics</topic><topic>RADIATION DETECTORS</topic><topic>SPECTRAL DENSITY</topic><topic>SPECTRAL FUNCTIONS</topic><topic>TEMPERATURE NOISE</topic><toplevel>online_resources</toplevel><creatorcontrib>SAULSON, P. R</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SAULSON, P. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal noise in mechanical experiments</atitle><jtitle>Physical review. D, Particles and fields</jtitle><addtitle>Phys Rev D Part Fields</addtitle><date>1990-10-15</date><risdate>1990</risdate><volume>42</volume><issue>8</issue><spage>2437</spage><epage>2445</epage><pages>2437-2445</pages><issn>0556-2821</issn><eissn>1089-4918</eissn><coden>PRVDAQ</coden><abstract>The fluctuation-dissipation theorem is applied to the case of low-dissipation mechanical oscillators, whose losses are dominated by processes occurring inside the material of which the oscillators are made. In the common case of losses described by a complex spring constant with a constant imaginary part, the thermal noise displacement power spectrum is steeper by one power of {omega} than is predicted by a velocity-damping model. I construct models for the thermal noise spectra of systems with more than one mode of vibration, and evaluate a model of a specific design of pendulum suspension for the test masses in a gravitational-wave interferometer.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>10013112</pmid><doi>10.1103/PhysRevD.42.2437</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0556-2821
ispartof Physical review. D, Particles and fields, 1990-10, Vol.42 (8), p.2437-2445
issn 0556-2821
1089-4918
language eng
recordid cdi_osti_scitechconnect_6315456
source American Physical Society Journals
subjects 640106 - Astrophysics & Cosmology- Cosmology
BROWNIAN MOVEMENT
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Classical and quantum physics: mechanics and fields
Classical mechanics of discrete systems: general mathematical aspects
DIFFERENTIAL EQUATIONS
EQUATIONS
EQUATIONS OF MOTION
Exact sciences and technology
FRICTION
FUNCTIONS
GRAVITATIONAL WAVE DETECTORS
HARMONIC OSCILLATOR MODELS
LANGEVIN EQUATION
MASS
MATHEMATICAL MODELS
MEASURING INSTRUMENTS
MECHANICAL VIBRATIONS
MOMENTUM TRANSFER
NOISE
PARTIAL DIFFERENTIAL EQUATIONS
Physics
RADIATION DETECTORS
SPECTRAL DENSITY
SPECTRAL FUNCTIONS
TEMPERATURE NOISE
title Thermal noise in mechanical experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20noise%20in%20mechanical%20experiments&rft.jtitle=Physical%20review.%20D,%20Particles%20and%20fields&rft.au=SAULSON,%20P.%20R&rft.date=1990-10-15&rft.volume=42&rft.issue=8&rft.spage=2437&rft.epage=2445&rft.pages=2437-2445&rft.issn=0556-2821&rft.eissn=1089-4918&rft.coden=PRVDAQ&rft_id=info:doi/10.1103/PhysRevD.42.2437&rft_dat=%3Cproquest_osti_%3E1859220279%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859220279&rft_id=info:pmid/10013112&rfr_iscdi=true