Reaction dynamics of Na sup (4 sup 2 P )+H sub 2 : Effect of reactant orbital alignment on reactivity and product rotational state distribution

We have investigated the direct reaction of Na{sup *}(4 {sup 2}{ital P}) with H{sub 2} to form the product NaH. Using far-wing absorption techniques, we have measured absorption into the NaH{sub 2} collision complex, followed by branching into nonreactive (formation of Na{sup *}) or reactive (format...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 1990-12, Vol.42:11
Hauptverfasser: Bililign, S., Kleiber, P.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Physical review. A, Atomic, molecular, and optical physics
container_volume 42:11
creator Bililign, S.
Kleiber, P.D.
description We have investigated the direct reaction of Na{sup *}(4 {sup 2}{ital P}) with H{sub 2} to form the product NaH. Using far-wing absorption techniques, we have measured absorption into the NaH{sub 2} collision complex, followed by branching into nonreactive (formation of Na{sup *}) or reactive (formation of NaH({ital X} {sup 1}{Sigma}{sup +}({ital v}{prime}{prime},{ital J}{prime}{prime}))) channels. We have observed the reaction to occur both via the attractive potential-energy surfaces and over a barrier on the repulsive surfaces. We have studied the effect of reactant orbital alignment on product rotational distribution for {ital v}{prime}{prime}=1. Specifically we find reaction on the repulsive surfaces leads preferentially to low rotational product states of NaH, while reaction on the attractive surfaces leads preferentially to high rotational states.
doi_str_mv 10.1103/PhysRevA.42.6938
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_6256265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>6256265</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_62562653</originalsourceid><addsrcrecordid>eNqNjs1OwzAQhC0EEuXnznHFCYQSbMcxDTdUFfWEqop75TgONUrtyutUylPwytjAA7CX-TQ7o11CbhgtGaPV43o34cYcX0rBS9lU8xMyY7QRBZOcn2auacEb8XROLhA_aRoxb2bka2OUjtY76Can9lYj-B7eFOB4gDvxIxzWcP-wStwmfoZl3xsdcy7ksnKJQ2ujGkAN9sPtTXbc79YebZxAuQ4OwXdj6gUfVb6Y4pjIQGcxBtuO2bwiZ70a0Fz_6SW5fV2-L1aFx2i3qG00eqe9c-mDreS15LKu_hX6Bi5hW88</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reaction dynamics of Na sup (4 sup 2 P )+H sub 2 : Effect of reactant orbital alignment on reactivity and product rotational state distribution</title><source>American Physical Society Journals</source><creator>Bililign, S. ; Kleiber, P.D.</creator><creatorcontrib>Bililign, S. ; Kleiber, P.D.</creatorcontrib><description>We have investigated the direct reaction of Na{sup *}(4 {sup 2}{ital P}) with H{sub 2} to form the product NaH. Using far-wing absorption techniques, we have measured absorption into the NaH{sub 2} collision complex, followed by branching into nonreactive (formation of Na{sup *}) or reactive (formation of NaH({ital X} {sup 1}{Sigma}{sup +}({ital v}{prime}{prime},{ital J}{prime}{prime}))) channels. We have observed the reaction to occur both via the attractive potential-energy surfaces and over a barrier on the repulsive surfaces. We have studied the effect of reactant orbital alignment on product rotational distribution for {ital v}{prime}{prime}=1. Specifically we find reaction on the repulsive surfaces leads preferentially to low rotational product states of NaH, while reaction on the attractive surfaces leads preferentially to high rotational states.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.42.6938</identifier><language>eng</language><publisher>United States</publisher><subject>640304 - Atomic, Molecular &amp; Chemical Physics- Collision Phenomena ; ALKALI METAL COMPOUNDS ; ALKALI METALS ; ATOM COLLISIONS ; ATOM-MOLECULE COLLISIONS ; ATOMIC AND MOLECULAR PHYSICS ; CHEMICAL REACTION KINETICS ; COLLISIONS ; ELEMENTS ; ENERGY LEVELS ; EXCITED STATES ; HYDRIDES ; HYDROGEN ; HYDROGEN COMPOUNDS ; KINETICS ; METALS ; MOLECULE COLLISIONS ; NONMETALS ; OPTICAL PUMPING ; PUMPING ; REACTION KINETICS ; ROTATIONAL STATES ; SODIUM ; SODIUM COMPOUNDS ; SODIUM HYDRIDES</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 1990-12, Vol.42:11</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/6256265$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bililign, S.</creatorcontrib><creatorcontrib>Kleiber, P.D.</creatorcontrib><title>Reaction dynamics of Na sup (4 sup 2 P )+H sub 2 : Effect of reactant orbital alignment on reactivity and product rotational state distribution</title><title>Physical review. A, Atomic, molecular, and optical physics</title><description>We have investigated the direct reaction of Na{sup *}(4 {sup 2}{ital P}) with H{sub 2} to form the product NaH. Using far-wing absorption techniques, we have measured absorption into the NaH{sub 2} collision complex, followed by branching into nonreactive (formation of Na{sup *}) or reactive (formation of NaH({ital X} {sup 1}{Sigma}{sup +}({ital v}{prime}{prime},{ital J}{prime}{prime}))) channels. We have observed the reaction to occur both via the attractive potential-energy surfaces and over a barrier on the repulsive surfaces. We have studied the effect of reactant orbital alignment on product rotational distribution for {ital v}{prime}{prime}=1. Specifically we find reaction on the repulsive surfaces leads preferentially to low rotational product states of NaH, while reaction on the attractive surfaces leads preferentially to high rotational states.</description><subject>640304 - Atomic, Molecular &amp; Chemical Physics- Collision Phenomena</subject><subject>ALKALI METAL COMPOUNDS</subject><subject>ALKALI METALS</subject><subject>ATOM COLLISIONS</subject><subject>ATOM-MOLECULE COLLISIONS</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>CHEMICAL REACTION KINETICS</subject><subject>COLLISIONS</subject><subject>ELEMENTS</subject><subject>ENERGY LEVELS</subject><subject>EXCITED STATES</subject><subject>HYDRIDES</subject><subject>HYDROGEN</subject><subject>HYDROGEN COMPOUNDS</subject><subject>KINETICS</subject><subject>METALS</subject><subject>MOLECULE COLLISIONS</subject><subject>NONMETALS</subject><subject>OPTICAL PUMPING</subject><subject>PUMPING</subject><subject>REACTION KINETICS</subject><subject>ROTATIONAL STATES</subject><subject>SODIUM</subject><subject>SODIUM COMPOUNDS</subject><subject>SODIUM HYDRIDES</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqNjs1OwzAQhC0EEuXnznHFCYQSbMcxDTdUFfWEqop75TgONUrtyutUylPwytjAA7CX-TQ7o11CbhgtGaPV43o34cYcX0rBS9lU8xMyY7QRBZOcn2auacEb8XROLhA_aRoxb2bka2OUjtY76Can9lYj-B7eFOB4gDvxIxzWcP-wStwmfoZl3xsdcy7ksnKJQ2ujGkAN9sPtTXbc79YebZxAuQ4OwXdj6gUfVb6Y4pjIQGcxBtuO2bwiZ70a0Fz_6SW5fV2-L1aFx2i3qG00eqe9c-mDreS15LKu_hX6Bi5hW88</recordid><startdate>19901201</startdate><enddate>19901201</enddate><creator>Bililign, S.</creator><creator>Kleiber, P.D.</creator><scope>OTOTI</scope></search><sort><creationdate>19901201</creationdate><title>Reaction dynamics of Na sup (4 sup 2 P )+H sub 2 : Effect of reactant orbital alignment on reactivity and product rotational state distribution</title><author>Bililign, S. ; Kleiber, P.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_62562653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>640304 - Atomic, Molecular &amp; Chemical Physics- Collision Phenomena</topic><topic>ALKALI METAL COMPOUNDS</topic><topic>ALKALI METALS</topic><topic>ATOM COLLISIONS</topic><topic>ATOM-MOLECULE COLLISIONS</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>CHEMICAL REACTION KINETICS</topic><topic>COLLISIONS</topic><topic>ELEMENTS</topic><topic>ENERGY LEVELS</topic><topic>EXCITED STATES</topic><topic>HYDRIDES</topic><topic>HYDROGEN</topic><topic>HYDROGEN COMPOUNDS</topic><topic>KINETICS</topic><topic>METALS</topic><topic>MOLECULE COLLISIONS</topic><topic>NONMETALS</topic><topic>OPTICAL PUMPING</topic><topic>PUMPING</topic><topic>REACTION KINETICS</topic><topic>ROTATIONAL STATES</topic><topic>SODIUM</topic><topic>SODIUM COMPOUNDS</topic><topic>SODIUM HYDRIDES</topic><toplevel>online_resources</toplevel><creatorcontrib>Bililign, S.</creatorcontrib><creatorcontrib>Kleiber, P.D.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bililign, S.</au><au>Kleiber, P.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reaction dynamics of Na sup (4 sup 2 P )+H sub 2 : Effect of reactant orbital alignment on reactivity and product rotational state distribution</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><date>1990-12-01</date><risdate>1990</risdate><volume>42:11</volume><issn>1050-2947</issn><eissn>1094-1622</eissn><abstract>We have investigated the direct reaction of Na{sup *}(4 {sup 2}{ital P}) with H{sub 2} to form the product NaH. Using far-wing absorption techniques, we have measured absorption into the NaH{sub 2} collision complex, followed by branching into nonreactive (formation of Na{sup *}) or reactive (formation of NaH({ital X} {sup 1}{Sigma}{sup +}({ital v}{prime}{prime},{ital J}{prime}{prime}))) channels. We have observed the reaction to occur both via the attractive potential-energy surfaces and over a barrier on the repulsive surfaces. We have studied the effect of reactant orbital alignment on product rotational distribution for {ital v}{prime}{prime}=1. Specifically we find reaction on the repulsive surfaces leads preferentially to low rotational product states of NaH, while reaction on the attractive surfaces leads preferentially to high rotational states.</abstract><cop>United States</cop><doi>10.1103/PhysRevA.42.6938</doi></addata></record>
fulltext fulltext
identifier ISSN: 1050-2947
ispartof Physical review. A, Atomic, molecular, and optical physics, 1990-12, Vol.42:11
issn 1050-2947
1094-1622
language eng
recordid cdi_osti_scitechconnect_6256265
source American Physical Society Journals
subjects 640304 - Atomic, Molecular & Chemical Physics- Collision Phenomena
ALKALI METAL COMPOUNDS
ALKALI METALS
ATOM COLLISIONS
ATOM-MOLECULE COLLISIONS
ATOMIC AND MOLECULAR PHYSICS
CHEMICAL REACTION KINETICS
COLLISIONS
ELEMENTS
ENERGY LEVELS
EXCITED STATES
HYDRIDES
HYDROGEN
HYDROGEN COMPOUNDS
KINETICS
METALS
MOLECULE COLLISIONS
NONMETALS
OPTICAL PUMPING
PUMPING
REACTION KINETICS
ROTATIONAL STATES
SODIUM
SODIUM COMPOUNDS
SODIUM HYDRIDES
title Reaction dynamics of Na sup (4 sup 2 P )+H sub 2 : Effect of reactant orbital alignment on reactivity and product rotational state distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reaction%20dynamics%20of%20Na%20sup%20(4%20sup%202%20P%20)+H%20sub%202%20:%20Effect%20of%20reactant%20orbital%20alignment%20on%20reactivity%20and%20product%20rotational%20state%20distribution&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Bililign,%20S.&rft.date=1990-12-01&rft.volume=42:11&rft.issn=1050-2947&rft.eissn=1094-1622&rft_id=info:doi/10.1103/PhysRevA.42.6938&rft_dat=%3Costi%3E6256265%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true