Self-consistent electrostatic potential due to trapped plasma in the magnetosphere

A steady state solution for the self-consistent electrostatic potential due to a plasma confined in a magnetic flux tube is considered. A steady state distribution function is constructed for the trapped particles from the constants of the motion, in the absence of waves and collisions. Using Liouvi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 1993-07, Vol.20 (13), p.1331-1334
Hauptverfasser: Miller, Ronald H., Khazanov, George V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1334
container_issue 13
container_start_page 1331
container_title Geophysical research letters
container_volume 20
creator Miller, Ronald H.
Khazanov, George V.
description A steady state solution for the self-consistent electrostatic potential due to a plasma confined in a magnetic flux tube is considered. A steady state distribution function is constructed for the trapped particles from the constants of the motion, in the absence of waves and collisions. Using Liouville's theorem, the particle density along the geomagnetic field is determined and found to depend on the local magnetic field, self-consistent electric potential, and the equatorial plasma distribution function. A hot anisotropic magnetospheric plasma in steady state is modeled by a bi-Maxwellian at the equator. The self-consistent electric potential along the magnetic field is calculated assuming quasineutrality, and the potential drop is found to be approximately equal to the average kinetic energy of the equatorially trapped plasma. The potential is compared with that obtained by Alfven and Faelthammar (1963).
doi_str_mv 10.1029/93GL01251
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_6133893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524396556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5481-26e25227a33ee8d2a9d6493eec44a6c211729ed904ffe7a45786b5101776acbf3</originalsourceid><addsrcrecordid>eNp9kUtv1DAQgCMEEkvhwJ1DhFBVDinjR-z4SCu6IK0KWkA9WlNnwhqySbC9gv57HKXaGz155Pnm0zyK4iWDcwbcvDNivQHGa_aoWDEjZdUA6MfFCsDkmGv1tHgW408AECDYqth-pb6r3DhEHxMNqaSeXApjTJi8K6dx_vTYl-2ByjSWKeA0UVtOPcY9ln4o047KPf4YKI1x2lGg58WTDvtIL-7fk-L71Ydvlx-rzef1p8v3m8rVsmEVV8RrzjUKQdS0HE2rpMmxkxKV44xpbqg1ILuONMpaN-q2ZsC0VuhuO3FSvF68uVlvo_OJ3C5PMuQBrGJCNEZk6HSBpjD-PlBMdu-jo77HgcZDtFzxvCbgGTx7EGQ1l8KoulYZfbugLu8pBursFPwew51lYOcr2OMVMvvmXovRYd8FHJyPxwLZcKm1ydj5gv3xPd3932fX243SZva-WgoGjGiHFHKHxggApTnMvmpJz1f9e_Rh-GWVFrq2N9dra7ZfNNvChb0R_wAj7qrC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524396556</pqid></control><display><type>article</type><title>Self-consistent electrostatic potential due to trapped plasma in the magnetosphere</title><source>Access via Wiley Online Library</source><source>NASA Technical Reports Server</source><creator>Miller, Ronald H. ; Khazanov, George V.</creator><creatorcontrib>Miller, Ronald H. ; Khazanov, George V.</creatorcontrib><description>A steady state solution for the self-consistent electrostatic potential due to a plasma confined in a magnetic flux tube is considered. A steady state distribution function is constructed for the trapped particles from the constants of the motion, in the absence of waves and collisions. Using Liouville's theorem, the particle density along the geomagnetic field is determined and found to depend on the local magnetic field, self-consistent electric potential, and the equatorial plasma distribution function. A hot anisotropic magnetospheric plasma in steady state is modeled by a bi-Maxwellian at the equator. The self-consistent electric potential along the magnetic field is calculated assuming quasineutrality, and the potential drop is found to be approximately equal to the average kinetic energy of the equatorially trapped plasma. The potential is compared with that obtained by Alfven and Faelthammar (1963).</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/93GL01251</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Legacy CDMS: Blackwell Publishing Ltd</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONFINEMENT ; DISTRIBUTION FUNCTIONS ; EARTH ATMOSPHERE ; EARTH MAGNETOSPHERE ; Earth, ocean, space ; ELECTRIC POTENTIAL ; ENERGY ; Exact sciences and technology ; External geophysics ; FUNCTIONS 661320 -- Auroral, Ionospheric, &amp; Magnetospheric Phenomena-- (1992-) ; Geophysics ; KINETIC ENERGY ; MAGNETIC FLUX ; MAGNETIC MOMENTS ; Physics of the magnetosphere ; PLASMA ; Trapped particles ; TRAPPING</subject><ispartof>Geophysical research letters, 1993-07, Vol.20 (13), p.1331-1334</ispartof><rights>Copyright 1993 by the American Geophysical Union.</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5481-26e25227a33ee8d2a9d6493eec44a6c211729ed904ffe7a45786b5101776acbf3</citedby><cites>FETCH-LOGICAL-c5481-26e25227a33ee8d2a9d6493eec44a6c211729ed904ffe7a45786b5101776acbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F93GL01251$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F93GL01251$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4824779$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6133893$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, Ronald H.</creatorcontrib><creatorcontrib>Khazanov, George V.</creatorcontrib><title>Self-consistent electrostatic potential due to trapped plasma in the magnetosphere</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>A steady state solution for the self-consistent electrostatic potential due to a plasma confined in a magnetic flux tube is considered. A steady state distribution function is constructed for the trapped particles from the constants of the motion, in the absence of waves and collisions. Using Liouville's theorem, the particle density along the geomagnetic field is determined and found to depend on the local magnetic field, self-consistent electric potential, and the equatorial plasma distribution function. A hot anisotropic magnetospheric plasma in steady state is modeled by a bi-Maxwellian at the equator. The self-consistent electric potential along the magnetic field is calculated assuming quasineutrality, and the potential drop is found to be approximately equal to the average kinetic energy of the equatorially trapped plasma. The potential is compared with that obtained by Alfven and Faelthammar (1963).</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONFINEMENT</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>EARTH ATMOSPHERE</subject><subject>EARTH MAGNETOSPHERE</subject><subject>Earth, ocean, space</subject><subject>ELECTRIC POTENTIAL</subject><subject>ENERGY</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>FUNCTIONS 661320 -- Auroral, Ionospheric, &amp; Magnetospheric Phenomena-- (1992-)</subject><subject>Geophysics</subject><subject>KINETIC ENERGY</subject><subject>MAGNETIC FLUX</subject><subject>MAGNETIC MOMENTS</subject><subject>Physics of the magnetosphere</subject><subject>PLASMA</subject><subject>Trapped particles</subject><subject>TRAPPING</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp9kUtv1DAQgCMEEkvhwJ1DhFBVDinjR-z4SCu6IK0KWkA9WlNnwhqySbC9gv57HKXaGz155Pnm0zyK4iWDcwbcvDNivQHGa_aoWDEjZdUA6MfFCsDkmGv1tHgW408AECDYqth-pb6r3DhEHxMNqaSeXApjTJi8K6dx_vTYl-2ByjSWKeA0UVtOPcY9ln4o047KPf4YKI1x2lGg58WTDvtIL-7fk-L71Ydvlx-rzef1p8v3m8rVsmEVV8RrzjUKQdS0HE2rpMmxkxKV44xpbqg1ILuONMpaN-q2ZsC0VuhuO3FSvF68uVlvo_OJ3C5PMuQBrGJCNEZk6HSBpjD-PlBMdu-jo77HgcZDtFzxvCbgGTx7EGQ1l8KoulYZfbugLu8pBursFPwew51lYOcr2OMVMvvmXovRYd8FHJyPxwLZcKm1ydj5gv3xPd3932fX243SZva-WgoGjGiHFHKHxggApTnMvmpJz1f9e_Rh-GWVFrq2N9dra7ZfNNvChb0R_wAj7qrC</recordid><startdate>19930709</startdate><enddate>19930709</enddate><creator>Miller, Ronald H.</creator><creator>Khazanov, George V.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19930709</creationdate><title>Self-consistent electrostatic potential due to trapped plasma in the magnetosphere</title><author>Miller, Ronald H. ; Khazanov, George V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5481-26e25227a33ee8d2a9d6493eec44a6c211729ed904ffe7a45786b5101776acbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONFINEMENT</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>EARTH ATMOSPHERE</topic><topic>EARTH MAGNETOSPHERE</topic><topic>Earth, ocean, space</topic><topic>ELECTRIC POTENTIAL</topic><topic>ENERGY</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>FUNCTIONS 661320 -- Auroral, Ionospheric, &amp; Magnetospheric Phenomena-- (1992-)</topic><topic>Geophysics</topic><topic>KINETIC ENERGY</topic><topic>MAGNETIC FLUX</topic><topic>MAGNETIC MOMENTS</topic><topic>Physics of the magnetosphere</topic><topic>PLASMA</topic><topic>Trapped particles</topic><topic>TRAPPING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Ronald H.</creatorcontrib><creatorcontrib>Khazanov, George V.</creatorcontrib><collection>Istex</collection><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Ronald H.</au><au>Khazanov, George V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-consistent electrostatic potential due to trapped plasma in the magnetosphere</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>1993-07-09</date><risdate>1993</risdate><volume>20</volume><issue>13</issue><spage>1331</spage><epage>1334</epage><pages>1331-1334</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>A steady state solution for the self-consistent electrostatic potential due to a plasma confined in a magnetic flux tube is considered. A steady state distribution function is constructed for the trapped particles from the constants of the motion, in the absence of waves and collisions. Using Liouville's theorem, the particle density along the geomagnetic field is determined and found to depend on the local magnetic field, self-consistent electric potential, and the equatorial plasma distribution function. A hot anisotropic magnetospheric plasma in steady state is modeled by a bi-Maxwellian at the equator. The self-consistent electric potential along the magnetic field is calculated assuming quasineutrality, and the potential drop is found to be approximately equal to the average kinetic energy of the equatorially trapped plasma. The potential is compared with that obtained by Alfven and Faelthammar (1963).</abstract><cop>Legacy CDMS</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/93GL01251</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 1993-07, Vol.20 (13), p.1331-1334
issn 0094-8276
1944-8007
language eng
recordid cdi_osti_scitechconnect_6133893
source Access via Wiley Online Library; NASA Technical Reports Server
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONFINEMENT
DISTRIBUTION FUNCTIONS
EARTH ATMOSPHERE
EARTH MAGNETOSPHERE
Earth, ocean, space
ELECTRIC POTENTIAL
ENERGY
Exact sciences and technology
External geophysics
FUNCTIONS 661320 -- Auroral, Ionospheric, & Magnetospheric Phenomena-- (1992-)
Geophysics
KINETIC ENERGY
MAGNETIC FLUX
MAGNETIC MOMENTS
Physics of the magnetosphere
PLASMA
Trapped particles
TRAPPING
title Self-consistent electrostatic potential due to trapped plasma in the magnetosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-consistent%20electrostatic%20potential%20due%20to%20trapped%20plasma%20in%20the%20magnetosphere&rft.jtitle=Geophysical%20research%20letters&rft.au=Miller,%20Ronald%20H.&rft.date=1993-07-09&rft.volume=20&rft.issue=13&rft.spage=1331&rft.epage=1334&rft.pages=1331-1334&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/93GL01251&rft_dat=%3Cproquest_osti_%3E1524396556%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524396556&rft_id=info:pmid/&rfr_iscdi=true